• 제목/요약/키워드: Viscosity Measurements

검색결과 213건 처리시간 0.029초

Viscosity and Volume Effects on Convective Flows in PGSE-NMR Self-Diffusion Measurements at High Temperature

  • Seo, Ji Hye;Chung, Kee-Choo
    • 한국자기공명학회논문지
    • /
    • 제16권2호
    • /
    • pp.122-132
    • /
    • 2012
  • The effects of the sample viscosity and volume on the convective flows induced by temperature gradient in PGSE-NMR self-diffusion measurements at high temperature have been investigated. The experimental results showed that the viscosity of the liquid sample strongly affects the magnitude of the convective flows as well as the diffusion coefficient itself. It was also found that the convective flows increase as the sample volume increase.

Blood Viscosity Measurements Using a Pressure-Scanning Capillary Viscometer

  • Sehyun Shin;Keum, Do-Young;Ku, Yun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1719-1724
    • /
    • 2002
  • A previously designed capillary viscometer with measuring differential pressure was modified to measure the viscosity of non-Newtonian fluids including unadulterated blood continuously over numerous shear rates in a single measurement. Because of unavoidable experimental noise and a limited number of data, the previous capillary viscometer experienced an inaccuracy and could not directly determine a viscosity without an iterative calculation. However, in the present measurement there are numerous data available near the point of interest so that the numeric value of the derivative, d(In Q)/d(In Q$\sub$w/), is no longer sensitive to the method of differentiation. In addition, relatively low and wide shear rate viscosity measurements were possible because of the present precision pressure-scanning method with respect to time. For aqueous polymer solutions, excellent agreement was found between the results from the pressure-scanning capillary viscometer and those from a commercially available rotating viscometer. In addition, the pressure-scanning capillary viscometer measured the viscosity of unadulterated whole blood without adding any anticoagulants.

고분자 전해질막 수소 연료 전지 분리판 용 고분자/흑연 복합 재료의 혼합 및 유변학적 특성에 관한 연구 (Study on Mixing Characteristic and Rheology of Polymer/Graphite Composites for a Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell)

  • 유태현;김동학;손영곤
    • 한국산학기술학회논문지
    • /
    • 제12권10호
    • /
    • pp.4673-4678
    • /
    • 2011
  • 이 연구에서는 고분자 전해질 막 연료전지의 분리판 용 고분자/흑연 복합소재의 혼합 특성 및 점도 측정 방법에 관하여 연구하였다. 분리판은 전도성이 있어야 하기 때문에 흑연의 함량이 매우 높고 이 때문에 제조된 복합재료의 점도가 높아 점도 측정이 어려운 문제가 있다. 일반적으로 캐필러리 레오메터에서 사용되는 다이로 점도를 측정한 결과 압력이 시간에 따라서 계속 변하고 정상상태의 값을 보이지 않아서 점도 측정이 불가능 했다. 다이의 디자인을 변경하여 측정하면 압력이 정상상태를 보이는 것을 관찰할 수 있었으나, 흑연과 PET를 단순 용융 혼합하여 점도를 측정하는 경우에는 측정된 점도 값이 재현성이 없는 결과를 나타냈다. 여러 차례의 시행 오차 끝에 흑연과 PET를 작은 입자로 분쇄한 후 용융 혼합하면 재현성 있는 점도를 측정할 수 있고, 제조된 복합재료의 전기전도도 값도 재현성 있는 결과를 보임을 관찰하였다.

Hemorheology and Cardiovascular Disease

  • Cho, Young-I.;Kensey, Kenneth R.
    • 순환기질환의공학회:학술대회논문집
    • /
    • 순환기질환의공학회 2002년도 제2회 학술대회 초록집
    • /
    • pp.3-18
    • /
    • 2002
  • Hemorheology plays an important role in atherosclerosis. Hemorheologic properties of blood include whole blood viscosity, plasma viscosity, hemaocrit, RBC deformability and aggregation, and fibrinogen concentration in plasma. Blood flow is determine by three parameters (pressure, lumen diameter, and whole blood viscosity), whole blood viscosity is one of the key physiological variables. However, the significance of whole blood viscosity has not yet not been fully appreciated. Whole blood viscosity has a unique property, non-Newtonian shear-thinning characteristics, which is primarily due to the presence of RBCs. Hence, RBC deformability and aggregation directly affect the magnitude of blood viscosity, and any factors or diseases affecting RBC characteristics influence blood viscosity. Therefore, on can see that whole blood viscosity is the causal mechanism by which traditional risk factors such as hypertension, hyperlipidemia, smoking, exercise, obesity, age, and gender are related to atherogenesis. In this regard, we included whole blood viscosity in the three key determinants of injurious pulsatile flow that results in mechanical injury and protective adaptation in the arterial system. Because whole blood viscosity is a potential predictor of cardiovascular diseases, it should be measured in routine cardiovascular profiles. Incorporating whole blood viscosity measurements into a standard clinical protocol could improve our ability to identify patients at risk for cardiovascular disease and its complications.

  • PDF

고분자량 점도지수향상제가 첨가된 오일의 음향점도 특성 (Acoustic Viscosity Characteristics of Oils with High Molecular Weight VI Improver Additives)

  • 공호성;;한흥구
    • Tribology and Lubricants
    • /
    • 제25권4호
    • /
    • pp.236-242
    • /
    • 2009
  • Oil viscosity is one of the important parameters for machinery condition monitoring. Basically, it is expressed as kinematic viscosity measured by capillary flow and dynamic or absolute viscosity measured by rotary shear viscometry. Recently, acoustic wave techniques appear in the market, measuring viscosity as the product of dynamic viscosity and density. For Newtonian fluids, knowledge of density allows conversion from one viscosity parameter to the other at a specific shear rate and temperature. In this work, oil samples with different chain lengths of viscosity index (VI) improvers and concentrations were examined by different viscometric techniques. Results showed that acoustic viscosity measurements give misleading results for oil samples with high molecular weight VI improvers and at low temperatures ${\leq}40^{\circ}C$.

초음파 개질 경유의 점도 및 표면장력 측정을 이용한 발열량 직접 계산 (A Direct Calculation of Higher Heating Values of Ultrasonic Reformed Diesel Fuels by Using Their Viscosity and Surface Tension Measurements)

  • 이병오;류정인
    • 한국분무공학회지
    • /
    • 제6권4호
    • /
    • pp.22-30
    • /
    • 2001
  • The objective of this study is to develop the new equations for the calculation of higher heating values(HHVs) of reformed diesel fuels by ultrasonic treatment. Therefore, higher heating values of reformed diesel fuels by ultrasonic treatment are determined experimentally and calculated from their viscosity and surface tension measurements. The HHVs of the fuels are supposed to be a function of viscosity(Pa s) and surface tension(N/cm). The equations developed for the samples represent the correlation obtained by means of regression analysis. The HHVs calculated by developing new equations using viscosities showes the differences from the measured values ranging from -0.66 to 1.19 % and the correlation coefficient was -0.9411. The HHVs calculated by developing new equations using surface tensions showed the differences from the measured values ranging from -0.70 to 1.51 % and the correlation coefficient was 0.9999. The viscosity and the surface tension are characteristic properties of ultrasonic reformed diesel fuels for developing new formulae.

  • PDF

생물기원 이차유기에어로졸의 점성도와 상 규명에 관한 최근 연구 동향 (Review of Viscosities and Phases of Biogenic Secondary Organic Aerosols)

  • 송미정
    • 한국대기환경학회지
    • /
    • 제32권4호
    • /
    • pp.349-359
    • /
    • 2016
  • Researchers have traditionally assumed that aerosol particles containing secondary organic aerosols (SOAs) are to be in liquid state with low viscosity even at low relative humidity. However, recent measurements showed that SOAs can have high viscosity under certain conditions. Herein, new different techniques for measurements of viscosities of SOA particles are introduced. Moreover, laboratory studies for the viscosities and the phases of biogenic SOAs produced by ${\alpha}$-pinene, isoprene, limonene, and ${\beta}$-caryophyllene of atmospheric relevance are reviewed. Future studies for determination of the phases of atmospheric aerosol particles are also suggested.

Continuous Viscosity Measurement of Non-Newtonian Fluids over a Range of Shear Rates Using a Mass-Detecting Capillary Viscometer

  • Sehyun Shin;Keum, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.255-261
    • /
    • 2002
  • A newly designed mass-detecting capillary viscometer uses a novel concept to continuously measure non-Newtonian fluids viscosity over a range of shear rates. A single measurement of liquid-mass variation with time replaces the now rate and pressure drop measurements that are usually required by capillary tube viscometers. Using a load cell and a capillary, we measured change in the mass flow rate through a capillary tube with respect to the time, m(t), from which viscosity and shear rate were mathematically calculated. For aqueous polymer solutions, excellent agreement was found between the results from the mass-detecting capillary viscometer and those from a commercially available rotating viscometer. This new method overcomes the drawbacks of conventional capillary viscometers meassuring non-Newtonian fluid viscosity. First, the mass-detecting capillary viscometer can accurately and consistently measure non -Newtonian viscosity over a wide range of shear rate extending as low as 1 s$\^$-1/. Second, this design provides simplicity (i. e., ease of operation, no moving parts), and low cost.

High-pressure rheology of polymer melts containing supercritical carbon dioxide

  • Lee Sang-Myung;Han Jae-Ro;Kim Kyung-Yl;Ahn Young-Joon;Lee Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제18권2호
    • /
    • pp.83-90
    • /
    • 2006
  • Supercritical carbon dioxide ($scCO_2$) has advantages of being incorporated in polymer with high solubility and of being recovered easily by depressurizing. $scCO_2$ reduces the viscosity of polymer melt and it is expected to be use as a plasticizing agent. In this work, we studied on the effect of $scCO_2$ on the rheological properties of polymer melts during extrusion process. Slit die attached to twin screw extruder was used to measure the viscosity of polymer melts plasticized by supercritical $CO_2$. A gas injection system was devised to accurately meter the supercritical $CO_2$ into the extruder barrel. Measurements of pressure drop within the die, confirmed the presence of a one phase mixture and a fully developed flow during the measurements. The viscosity measurement of polypropylene was performed at experimental conditions of various temperatures, pressures and $CO_2$ concentrations. We observed that melt viscosity of polymer was dramatically reduced by $CO_2$ addition.

Experimental observation and numerical simulation of cement grout penetration in discrete joints

  • Lee, Jong-Won;Kim, Hyung-Mok;Yazdani, Mahmoud;Lee, Hangbok;Oh, Tae-Min;Park, Eui-Seob
    • Geomechanics and Engineering
    • /
    • 제18권3호
    • /
    • pp.259-266
    • /
    • 2019
  • This paper presents a comparison between experimental measurements and numerical estimations of penetration length of a cement grout injected in discrete joints. In the experiment, a joint was generated by planar acryl plates with a certain separation distance (; aperture) and was designed in such a way to vary the separation distances. Since a cement grout was used, the grout viscosity can be varied by controlling water-cement (W/C) ratios. Throughout these experiments, the influence of joint aperture, cement grout viscosity, and injection rate on a penetration length in a discrete joint was investigated. During the experiments, we also measured the time-dependent variation of grout viscosity due to a hardening process. The time-dependent viscosity was included in our numerical simulations as a function of elapsed time to demonstrate its impact on the estimation of penetration length. In the numerical simulations, Bingham fluid model that has been known to be applicable to a viscous cement material, was employed. We showed that the estimations by the current numerical approach were well comparable to the experimental measurements only in limited conditions of lower injection rates and smaller joint apertures. The difference between two approaches resulted from the facts that material separation (; bleeding) of cement grout, which was noticeable in higher injection rate and there could be a significant surface friction between the grout and joint planes, which are not included in the numerical simulations. Our numerical simulation, meanwhile, could well demonstrate that penetration length can be significantly over-estimated without considering a time-dependency of viscosity in a cement grout.