• 제목/요약/키워드: Viscosity Equation

검색결과 392건 처리시간 0.021초

고속 열유체 저어널 베어링에서 단일유체로서의 다등급 엔진 오일과 그 첨가액체들의 혼합물에 대한 성능 비교 (The Performance Comparison between the Mixture of Each Liquid to be Blended and Multi-grade Engine Oil as a Single Fluid in a High Speed Thermo-hydrodynamic Journal Bearing)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제28권2호
    • /
    • pp.81-92
    • /
    • 2012
  • To product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive liquid package and a polymer liquid as viscosity index improver in order to improve the lubricating property of oil. That is, engine oil is the mixture of more than two fluids. In this paper, it will be systematically organized the governing equation describing non-Newtonian thermo-hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics. Then, in order to find how the thermal analysis effect on the bearing performance lubricated with the mixture of multi-fluids, it will be compared to the performances between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed journal bearing. It is found that, in the case of lower viscosity oil, the difference of pressure distribution between the above two cases turns out to be existed, even if the load capacity is same level.

Dilutant flow characteristics model of coarse particle suspensions with uniform size distribution

  • Ookawara, Shinichi;Ogawa, Kohei
    • Korea-Australia Rheology Journal
    • /
    • 제15권1호
    • /
    • pp.35-41
    • /
    • 2003
  • It is expected that particle size distribution of any portion obtained through screening, is of more uniform than that of the original mixture, typically following such as log-normal, Rosin-Rammler distributions and so on. In this study, therefore, a new relation between parameters of the uniform distribution and flow characteristics of the coarse particle suspensions is derived based on the continuous polydisperse model (Ookawara and Ogawa, 2002b), which is derived from the discrete polydisperse model (Ookawara and Ogawa,2002a). The derived model equation predicts a linear increase of viscosity with shear rate, viz., dilutant flow characteristics. Further, the increase of viscosity is expected to be proportional to the square of volume fraction of particles, and to show the linear dependency on density and average diameter of particles. It is also shown that the uniform distribution model includes additional term that expresses the effect of distribution width. For verification of the model, the experimental results of Clarke (1967) are cited as well as in our previous work for the monodisperse model (Ookawara and Ogawa,2000) since most parameters were varied independently in his work. It is suggested that the newly introduced term expands the applicable range compared with the monodisperse model.

Thermophysical Properties of Acetophenone with Ethylchloroacetate at Temperatures of 303.15, 313.15 and 323.15 K

  • Saravanakumar, K.;Baskaran, R.;Kubendran, T.R.
    • 대한화학회지
    • /
    • 제56권4호
    • /
    • pp.424-430
    • /
    • 2012
  • Densities, viscosities, refractive indices and speed of sounds of the binary mixtures of Acetophenone with Ethylchloroacetate were measured over the entire mole fractions at (303.15, 313.15 and 323.15) K. From these experimental results, excess molar volume $V^E$, viscosity deviation ${\Delta}{\eta}$, refractive index deviation ${\Delta}n_D$, deviations in speed of sound ${\Delta}u$, deviations in isentropic compressibility ${\Delta}k_s$ and excess intermolecular free length ${\Delta}L_f$ were calculated. The viscosity data have been correlated with the equations of Grunberg and Nissan, Hind et al., Tamura and Kurata, Katti and Chaudri, Sedgwick, Krishnan-Laddha and McAllister. The thermo physical properties under study were fit to the Jouyban-Acree model. The excess values were correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations. It was found that in all cases, the data obtained fitted with the values correlated by the corresponding models very well. The results are interpreted in terms of molecular interactions occurring in the solution.

기관축계의 비선형 다자유도 강제 비틀림진동에 관한 연구 (A Study on the Non-linear Forced Torsional Vibration for Propulsion Shaftings with Multi-Degree-of-Freedom System)

  • 김수철;이문식;장민오;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.7-14
    • /
    • 2000
  • Nowadays, the viscous damper using high viscosity oil was much to be used for engine shafting system to reduce the excessive additional stress by torsional vibration. In general, it was assumed that the viscous damper could be modelled having only damping coefficient, that is to say, whose stiffness be ignored. But it is found that there exists a jump phenomenon, as a kind of non-linear vibration, in the actual engine shafting system with a damper of high viscosity. Therefore the damper ring and the casing are modelled as two mass elastic system with a complex viscosity. Also, to analyze a non-linear phenomenon, it is assumed that the viscous damper has a linear stiffness coefficient in proportion to the angular amplitude and a non-linear stiffness coefficient in proportion to cube of the angular amplitude. For the analysis, Quasi-Newton method with BFGS(Broyden-Fletcher-Goldfarb-Shanno) formula is used. Both calculated and measured values are provided in this paper which confirm the possibility of applying non-linear theory to engine shafting system with viscous damper.

  • PDF

Effect of Molecular Weight and NaCI Concentration on Dilute Solution Properties of Chitosan

  • Hwang, Jae-Kwan;Hong, Sang-Pill;Kim, Chong-Tai
    • Preventive Nutrition and Food Science
    • /
    • 제2권1호
    • /
    • pp.1-5
    • /
    • 1997
  • Solution Properties of polyelectrolytic biopolymers such as chitosen, pectin, alginate and etc. are significantly influenced by molecular weight and salt concentrations. The effect of NaCI concentration on the hydrodynamic properties of chitosan in dilute region was investigated for chitosans of varying molecular weight. Intrinsic vicosity([η]) of citosans with 5 different molecular weight was determined by glass capillary viscometer, and the viscosity average molecular weight was calculated using Mark-Houwink equation. Intrinsic viscosity decreased with increasing NaCI concentration for all chitosan samples, and it was proportional to the logarithmic NaCI concentration, i.e.,[η]∝log{TEX}$(C_{NaCl})^{$\alpha$}${/TEX}. Decreasing trend of[η] with NaCI concentration became more pronounced with increasing molecular weight. It was also found that the a values, indicating {TEX}$C_{NaCl}${/TEX} dependence of[η], were linearly correlated with the logarithmic molecular weight({TEX}$R^{2}${/TEX}=0.980). The chain stiffness parameters(B) were calculated by B=S./{TEX}$([η]_{0.1})^{1.32}${/TEX}, in which S was obtained from slope of [η] va {TEX}$I^{-1/2}${/TEX}. The B values of chitosan samples were determined to be 0.113~0071 with a average of 0.09.

  • PDF

낮은 오일 농도에서 $CO_2$-Oil 혼합물의 밀도와 점성예측 (Prediction of density and viscosity for $CO_2$-oil mixture at low oil concentration)

  • 윤린
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.136-141
    • /
    • 2008
  • Due to environmental concerns $CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems since 1990s. In a refrigeration cycle, oil is utilized in lubricating a compressor. However, although oil separators are installed after a compressor oil is prone to leak to the whole system. The mixing of $CO_2$ and oil, even a small amount of oil, the heat transfer performance in heat exchanger deteriorated and the pressure drop inside tube increases. Therefore, it is needed to precisely estimate the mixture thermodynamic properties of $CO_2$-lubricant oil to correctly design a $CO_2$ refrigeration system. The commonly used method in estimating the mixture properties is the mole based weighting model. However, the accuracy of the method can not be assured. In the present study, $CO_2$-lubricant oil mixture properties including viscosity and density were estimated by using the mixture models, based on the equation of state (EOS).

  • PDF

Sucrose-NaCl- 물의 3성분 혼합액체의 점도에 관한 연구 (Viscosities of Ternary Mixtures of Sucrose-Sodium Chloride-Water)

  • 오명숙
    • 한국식품과학회지
    • /
    • 제22권1호
    • /
    • pp.66-70
    • /
    • 1990
  • sucrose-Nacl-물의 3성분 혼합액체의 점도를 예측하기 위한 모델을 결정하기 위하여 온도 $10{\sim}40^{\circ}C$, NaCl농도 $1.0064{\sim}5.7037mol$, sucrose농도 $0.3436{\sim}2.5966mol$의 범위에서 점도 실험을 행한 결과 다음의 결과를 얻었다. NaCl용액의 점도는 식 (8)로, sucrose용액의 점도는 식 (5)로 나타낼 수 있었다. 또한 식 (8)과 (5)의 계수들은 강한 온도의존성을 가지고 있었고 식 (7)로 표현되었다. NaCl-sucrose-물의 3성분 혼합액체의 점도는 5개의 계수를 가진 다항식인 식 (9)로 상당히 정확하게 표현할 수 있었고, NaCl용액과 sucrose용액 사이에는 상호작용은 거의 없는 것으로 생각되었다.

  • PDF

액상과 고상의 유동현상을 고려한 레오로지 성형공정의 표면결함예측을 위한 응고해석 (Solidification Analysis for Surface Defect Prediction of Rheology Forming Process Considering Flow Phenomena of Liquid and Solid Region)

  • 서판기;정영진;강충길
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.1971-1981
    • /
    • 2002
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocities and temperature fields during rheology forming process, the each governing equations correspondent to the liquid and solid region are adapted. Therefore, each numerical model considering the solid and liquid coexisting region within the semi-solid material have been developed to predict the defects of rheology forming parts. The Arbitrary Boundary Maker And Cell(ABMAC) method is employed to solve the two-Phase flow model of the Navier-Stokes equation. Theoretical model basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on using the liquid and solid viscosity. The Liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

Effect of Aeration and Agitation Conditions on the Production of Glucoamylase with Aspergillus niger No. PFST-38

  • Oh, Sung-Hoon;O, Pyong-Su;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권4호
    • /
    • pp.292-297
    • /
    • 1993
  • Aspergillus niger No. PFST-38 was grown on complex media in 30L agitated fermentors at various aeration rates and stirrer speeds. We could correlate the mixing time as a function of the Reynolds number and the apparent viscosity, as follows. ${\theta}_M=2.95\;\NRe^{-0.52},\;{\theta}_M=1.88\;{\eta_a}^{0.57}$ Also, the effects of the apparent viscosity (${\theta}_a$), the impeller rotational speed (N), the air flow rate ($V_s$), and the mixing time (${\theta}_M$) on the oxygen transfer coefficient, $K_L a$ were determined experimentally, and equated as follows. $K_La=12.04N^{0.88}Vs^{0.71}{n_a}^{-0.83},\;K_La=30.2N^{0.88}Vs^{0.71}{\theta_M}^{-1.45}$ $K_La$ increased as the agitation speed and the air flow rate increased. The rate of $K_La$ increase was dependent more on the rotational speed of impeller than on the air flow rate. The glucoamylase production increased with the increase of the agitation speed upto at 500 rpm and increased with the increase of air flow rate upto at 1.0 vvm. The values calculated from the above equation confirmed that the experimental maximum production of glucoamylase was achieved when the $K_La$ and the apparent viscosity of the broth were $260\;hr^{-1}$ and 1800 cps, respectively.

  • PDF

Estimation of the Lubricating Oil Rheology at High Pressure Based on Phase Diagram

  • Rahman, Md.Z.;Ohno, N.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.85-86
    • /
    • 2002
  • For rheology investigation of lubricating oils, first phase diagrams were made from determined free volume based on density measurements and the temperature-pressure relation was estimated using the expansion coefficient of free volume and the temperature-pressure relation of the viscoelastic transition point. Next, the authors proposed the density-pressure-temperature relation and the viscosity-pressure-temperature relation of the tested oils based on the free volume and the phase diagrams. Moreover, it was shown that the Ehrenfest equation or the gradient of the phase diagram is closely related to the expansion coefficient of free volume.

  • PDF