• Title/Summary/Keyword: Viscoelasticity

Search Result 289, Processing Time 0.028 seconds

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode (일래스토메릭 부싱의 반경방향모드 비선형 점탄성 모델연구)

  • 이성범;류재평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.703-708
    • /
    • 2002
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the load applied to the shaft or sleeve and the relative deformation of Elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation fur elastomeric bushing is important fur dynamic numerical simulations. A boundary value problem for the bushing response leads to the load-displacement relation which requires complex calculations and is hence unsuitable. Therefore, by modifying the constitutive equation for a nonlinear viscoelastic incompressible material developed by Lianis, the data fur the elastomeric bushing material was obtained and this data was used to derive the new load-displacement relation fur radial response of the bushing. After the load relaxation function for the bushing is obtained from the step displacement control test, Pipkin-Rogers model was developed. Solutions were allowed for comparison between the results of Modified Lianis model and those of the proposed model. It is shown that the proposed Pipkin-Rogers model is in very good agreement with Modified Lianis model.

  • PDF

Effects of Solubilized Additives on the Microstructure and Its Rheological Properties of CTAB Solutions (CTAB 용액의 미세구조와 유변학적 물성에 대한 첨가제의영향)

  • 양승만
    • The Korean Journal of Rheology
    • /
    • v.9 no.1
    • /
    • pp.6-15
    • /
    • 1997
  • 계면활성제용액에 서로 다른 기능을 하는 두 종류의 첨가제를 투입하여 미셀의 미 세구조 전이현상을 규명하였다. 양이온 계면활성제는 CMC 이상의 농도에서 2단계의 미세 구조 전이거동을 나타낸다. 우선 구형 미셀은 첨가제의 투입에 의하여 표면에서의 친수성기 간의 반발력이 감소됨으로써 실린더형 또는 디스크형미셀로 전이가 일어난다. 더욱 농도가 증가하면 이방성을 가지는 실린더형 미셀간의 중첩 또는 hooking 현상에 의한 두 번째 전 이가 일어난다. 이때 미셀 용액은 흔히 점탄성을 나타내거나 확연한 비뉴톤성 유체거동을 나타낸다. 본 연구에선 heptanol의 화확구조적 차이가 물성에 나타내는효과를 규명하고 wormlike 미셀을 형성하는 MaSal에 의한 점탄성 거동을 살펴보았다. Heptanol의 화학구조 의 영향을 보면 약친수성기인 OH기가 알킬그룹과 나란하게 존재하여 밀집된 구조를 가지 기 쉬운 primary heptanol이 가장효과적으로 미세구조 전이를 유도함을 관찰하였다. 다른 이성질 hetanol의 경우 secondary heptanol이 teriary heptanol에 비하여 효과적임을 보이지 만 화학재할수 있는 농도범위가 매우 좁아 대부분 영역에서 비뉴톤성거동을 나타냄을 확인 하였다. 즉 NaSal를 사용한 경우 실린더형 미셀이 존재할 수 있는농도범위가 매우 좁아 대 부분 영역에서 비뉴톤성 거동을 나타냄을 확인하였다. 즉 NaSal 이 첨가된 용액은 선형점탄 성거동을 보이며 몰비가 증가함에 따라 scission 과정이 관찰되었다. 또한 몰농도비에 따라 항복응력과 shear thickening 특징을 보이는데 이는 흐름장의 세기에 따라 미세구조 변화가 일어나기 때문이다.

  • PDF

Dynamic Viscoelasticity and Optical Properties of Poly(carbonate-g-styrene) Copolymers in the Glass Transition Zone (Poly(carbonate-g-styrene)공중합체의 유리정이 영역에서의 동적 점탄성과 광학특성)

  • 황의정
    • The Korean Journal of Rheology
    • /
    • v.9 no.4
    • /
    • pp.163-173
    • /
    • 1997
  • Polystyrene/polycarbonate 조성이 약 50/50인 3종류의 Poly(carbonate-g-styrene) 공중합체의 동적 탄성율, E*($\omega$)와 동적 스트레인-광학계수 O*($\omega$)을 유리전이 영역부근의 여러온도에서 동시에 측정하여 연구하였다. 두 개의 공중합체는 각각의 스티렌 그라프트쇄 에 5, 10 wt%의 MAH를 함유하고 있다. 이들 공중합체의 E*($\omega$)와 O*($\omega$)완화거동과 그라 프트 공중합체의 상용성과 연관하여 비교 고찰하였다. 공중합체들의 E*($\omega$)는 전형적인 무 정형 고분자의 유리전이 완하거동을 보였으며 정성적인 차이를 발견할수 없었다. 그러나 고 강도의 단일 tan$\delta$분산의 저주파수 영역에 미세분산을 나타내, 공중합체는 2상으로 분리되 어 있음이 추정되엇다. 폴리스티렌 그라프트체에 무수 말레인산 함유량이 증가함에 따라, 저 주파수 영역의 미세피크가 $\alpha$주분산에 병합되어 성분 고분자간의 상호 형동성이 증가함을 알수 있었다. 3공중합체의 유사한 기계적 특성과는 달리, 광학적 완화 스펙트럼 O*($\omega$)는 정 성적으로 명확한 차이를 보여 공중합체들의 광학완화 거동이 명확히 다름을 나타냈다. 기계 적 특성보다는 광학적 특성이 공중합체내의 성분 고분자의 미세한 완하 거동에 훨씬 민감한 응답을나타냈다. 이러한 특성적인 공중합체의 O*($\omega$)차이를 공중합체의 조성단일 고분자 PS, PC의 O*($\omega$)의 가성성을 가정하여 모사하였다 모사에서 구한 광학적 부분 기여 파라메 터를 사용하여 공중합체의 상용성을 고찰하였다.

  • PDF

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Automotive Suspension System (I) -Axial Mode- (차량현가장치용 일래스토메릭 부시으이 비선형점탄성 모델연구 (I) -축 방향 모드-)

  • 이성범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.154-161
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer suface. The relation between the force applied to the shaft or sleeve and their relative deformation is nolinear and exhibits features of viscoelasticity. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the force relaxation function of the bushing. The new nonlinear viscoelastic bushing model, which is called Pipkin-Rogers model, is proposed and it is shown that the predictions of the proposed force-displacement relation are in very good agreement with the exact results. This new bushing model is thus very suitable for use in multi-body dynamics codes. The success of the present study for axial mode response suggests that the same approach be applied to other modes, such as torsional or radial modes.

  • PDF

Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.31-52
    • /
    • 2020
  • This paper investigates the size dependent effect on the vibration analysis of a porous nanocomposite viscoelastic plate reinforced by functionally graded-single walled carbon nanotubes (FG-SWCNTs) by considering nonlocal strain gradient theory. Therefore, using energy method and Hamilton's principle, the equations of motion are derived. In this article, the effects of nonlocal parameter, aspect ratio, strain gradient parameter, volume fraction of carbon nanotubes (CNTs), damping coefficient, porosity coefficient, and temperature change on the natural frequency are perused. The innovation of this paper is to compare the effectiveness of each mentioned parameters individually on the free vibrations of this plate and to represent the appropriate value for each parameter to achieve an ideal nanocomposite plate that minimizes vibration. The results are verified with those referenced in the paper. The results illustrate that the effect of damping coefficient on the increase of natural frequency is significantly higher than the other parameters effect, and the effects of the strain gradient parameter and nonlocal parameter on the natural frequency increase are less than damping coefficient effect, respectively. Furthermore, the results indicate that the natural frequency decreases with a rise in the nonlocal parameter, aspect ratio and temperature change. Also, the natural frequency increases with a rise in the strain gradient parameter and CNTs volume fraction. This study can be used for optimizing the industrial and medical designs, such as automotive industry, aerospace engineering and water purification system, by considering ideal properties for the nanocomposite plate.

A Study on the Affection of Frequency and Displacement for Nonlinear Viscoelastic Bushing Model (비선형 점탄성 부싱모델에 대한 주파수와 변위의 영향에 대한 연구)

  • Kim, Sung-Jin;Min, Je-Hong;Lee, Seong-Beom
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.334-341
    • /
    • 2003
  • A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. A force-displacement relation for bushings is important for multibody dynamics numerical simulations. For the nonlinear viscoelastic axial response, Pipkin-Rogers model, the direct relation of force and displacement, has been derived from Lianis model and the sinusoidal input was used fer Pipkin-Rogers model, and the affection of displacement with frequency change was studied with Pipkin-Rogers model.

The Anisotropic and Viscoelastic Properties of Bone Tissue (근골격계의 골조직이 가지는 이방성 및 점탄성 특성)

  • Kim, Jin-Sung;Kwon, Jung-Sik;Roh, Jin-Ho;Lee, Soo-Yong
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.9-13
    • /
    • 2012
  • In this research, biomechanical characteristics of the bone tissue are experimentally investigated. By using specimens of the bovine bone, the mechanical properties are obtained through tension and shear tests. In experiments, non-homogeneous and anisotropic properties with respect to longitudinal and transversal directions are observed. Moreover, the viscoelastic behavior in which modulus and strength properties are dependent on strain rates is analyzed. It is expected that a numerical damage model of the bone be efficiently established based on the results.

The Curved Interfacial Crack Analysis between Foam and Composite Materials under Anti-plane Shear Force (반평면 전단하중력하에서 곡면형상 접합면을 가지는 폼과 복합재료 접합부의 계면크랙에 관한 연구)

  • 박상현;전흥재
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.67-74
    • /
    • 2000
  • The general solution of the anti-plane shear problem for the curved interfacial crack between viscoelastic foam and composites was investigated with the complex variable displacement function. Kelvin-Maxwell three parameter model is used to present viscoelasticity and the Laplace transform was applied to treat the viscoelastic characteristics of foam in the analysis. The stress intensity factor near the interfacial crack tip was predicted by considering both anisotropic and viscoelastic properties of two different materials. The results showed that the stress intensity factor increased with increasing the curvature of the curved interfacial crack and it also increased and eventually converged to a specific value with increasing time. The stress intensity factor increased with increasing the ratio of stiffness coefficients between foam and composites and the effect of fiber orientation on the stress intensity factor decreased with increasing the ratio of stiffness coefficients between foam and composites.

  • PDF

Comparative study of torsional wave profiles through stratified media with fluted boundaries

  • Maity, Manisha;Kundu, Santimoy;Kumari, Alka;Gupta, Shishir
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.91-104
    • /
    • 2020
  • A mathematical analysis has been carried out for understanding the traversal attributes of torsional waves in a Voigt-type viscoelastic porous layer bounded with corrugated surfaces resting over a heterogeneous transversely isotropic gravitating semi-infinite medium. Both the media are assumed to be under the effect of initial stresses acting along horizontal directions. In the presumed geometry, continuous and periodic type of corrugation has been considered. The condensed form of dispersion relation has been obtained analytically with the aid of the Whittaker's function and suitable boundary conditions. The influence of viscoelasticity, porosity, initial stresses, heterogeneity, gravity, undulation and position parameters on the phase and damped velocities has been illustrated graphically. In addition, relative examination investigating the impact of corrugated and planar bounded surfaces on the dispersion and damping characteristics is one of the important highlights of this study.

A Study on Ultra Precision Grinding Characteristics of Tungsten Carbide $LCU\_CL$ Core (초경합금 소재 $LCU\_CL$ 코어의 초정밀 연삭 특성에 관한 연구)

  • Jeong Sanghwa;Cha Kyoungrae;Kim Hyunuk;Lee Bongju
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.307-312
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this thesis, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base core of the glass lens used to the laser scanning unit and the camera phone.

  • PDF