• 제목/요약/키워드: Viscoelastic Layer

검색결과 167건 처리시간 0.026초

Dynamic analysis of laminated nanocomposite pipes under the effect of turbulent in viscoelastic medium

  • Ghaitani, M.M.;Majidian, A.;Shokri, V.
    • Wind and Structures
    • /
    • 제30권2호
    • /
    • pp.133-140
    • /
    • 2020
  • In this paper, critical fluid velocity and frequency of laminated pipe conveying fluid are presented. Each layer of the pipe is reinforced by functionally graded carbon nanotubes (FG-CNTs). The internal fluid is assumed turbulent and the induced forces are calculated by momentum equations. The pipe is resting on viscoelastic foundation with spring, shear and damping constants. The motion equations are derived based on classical shell theory and energy method. Differential quadrature method (DQM) is used for solution and obtaining the critical fluid velocity. The effects of volume percent and distribution of CNT, boundary condition, lamina layer number, length to radius ration of pipe, viscoelastic medium and fluid velocity are shown on the critical fluid velocity. Results show that with increasing the lamina layer number, the critical fluid velocity increases.

점탄성층이 부분적으로 삽입된 샌드위치보의 횡진동모드별 감쇠특성 (Modal Damping of the Flexural Vibration of a Sandwich Beam with Partially Inserted Viscoelastic Layer)

  • 박진택;최낙삼
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.224-227
    • /
    • 2000
  • Modal damping characteristics of the flexural vibration of a sandwich beam with paaially inserted viscoelastic layer have been quantitatively studied using the finite element analysis in combination with an experiment. Antisymmetric mode shapes of the flexural vibration were visualized by the holographic interferometry and agreed with those calculated by the finite element simulation. Effects of the length and thickness of partial viscoelastic layers on the system loss factor($\mu$) and resonant frequency($\omega$) were considerably latge at both symmetric and antisymmetric modes of the sandwich beam.

  • PDF

굽힘진동 감쇠를 위한 구속층의 최적설계에 관한 연구 (A Study on the Optimum Design of Constrained layer for the Damping of Flexural Vibration)

  • 김사수;이민우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.95-101
    • /
    • 1997
  • A general method is presented for the analysis of the damping effectiveness of viscoelastic layer applied to elastic beam. The damping is attributed to the shear deformations of the treatment. Specific results are then given for sandwich beams with dissipative cores. The calculated results by this method are validated by comparison with the experimental results. Optimum design of a viscoelastic damping layer which is constrainedly cohered on a steel beam is discussed from the viewpoint of the modal loss factor. An object function is a loss factor of 3-layered beam and design variable is the thickness of constraining layer and viscoelastic layer. Optimum thickness can be obtained when 3-layered beam has a maximum loss factor.

  • PDF

능동 구속감쇠층을 이용한 아크형태 셸 모델에 대한 진동특성 연구 (Vibration Characteristic Study of Arc Type Shell Using Active Constrained Layer Damping)

  • 고성현;박현철;황운봉;박철휴
    • 한국소음진동공학회논문집
    • /
    • 제14권3호
    • /
    • pp.193-200
    • /
    • 2004
  • The Active Constrained Layer Damping(ACLD) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and viscoelastic damping. The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for the piezo actuator is obtain by LQR(Linear Quadratic Regulator) method. The performance of the ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment. Also, the actuation capability of a piezo actuator is examined experimentally by varying thickness of viscoelastic material(VEM).

수분 흡수로 인해 고분자 박막에서 발생하는 점탄성 응력 해석 (Viscoelastic Stress Analysis of Polymeric Thin Layer Under Moisture Absorption)

  • 이상순;장영철
    • 마이크로전자및패키징학회지
    • /
    • 제10권1호
    • /
    • pp.25-29
    • /
    • 2003
  • 이 논문은 고분자 박막이 주변으로부터 수분을 흡수하게 될 때, 탄성 기판과 점탄성 박막의 계면 모서리에서 발생하는 응력 특이성을 다루고 있다. 계면에서 발생하는 응력을 조사하기 위해서 경계 요소법이 사용되고 있다. 주어진 점탄성 모델에 대해서 특이 차수가 수치적으로 계산된다. 이 논문에서 고려하고 있는 점탄성 모델에 대해서, 응력특이계수는 시간이 경과함에 따라 이완되고 있으나 특이 차수는 증가되고 있음을 보여준다.

  • PDF

유연보의 과도 진동 감쇠를 위한 점탄성 재료의 최적 분포 (Optimal Distribution of Viscoelastic Material for Transient Vibration Suppression of a Flexible Beam)

  • 김태우;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.605-610
    • /
    • 2002
  • Eigenvalues are taken as performance criteria for structural damping design using viscoelastic material. Given material properties, optimal distribution of damping material is sought based on eigenvalue sensitivity. For eigenanalysis of frequency dependent viscoelastic material treated structures, Golla-Mushes-McTavish (GHM) model is used and some dominant modes are chosen for consideration. To avoid the intensity of computation caused by increased problem size, an alternative approximate method is proposed which uses elastic modes and can be applied under small damping assumption. A cantilever beam treated with unconstrained viscoelastic layer is tested and optimal distribution of thickness of the layer is illustrated. Partial coverage configurations are compared with the one-sided full coverage case.

  • PDF

Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi;Mahesh, Vinyas
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.391-403
    • /
    • 2019
  • In this article the frequency response analysis of curved magneto-electro-viscoelastic functionally graded (CMEV-FG) nanobeams resting on viscoelastic foundation has been carried out. To this end, the study incorporates the Euler-Bernoulli beam model in association with Eringen's nonlocal theory to incorporate the size effects. The viscoelastic foundation in the current investigation is assumed to be the combination of Winkler-Pasternak layer and viscous layer of infinite parallel dashpots. The equations of motion are derived with the aid of Hamilton's principle and the solution to vibration problem of CMEV-FG nanobeams are obtained analytically. The material gradation is considered to follow Power-law rule. This study thoroughly investigates the influence of prominent parameters such as linear, shear and viscous layers of foundation, structural damping coefficient, opening angle, magneto-electrical field, nonlocal parameter, power-law exponent and slenderness ratio on the frequencies of FG nanobeams.

온도변화에 대한 고분자 코팅 층에 발생하는 응력 해석 (Analysis of Stresses Induced in a Polymer Coating Layer due to Temperature Change)

  • 박명규;이상순;서창민
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.72-76
    • /
    • 2003
  • This paper deals with the stress singularity developed in a polymer layer that is coated to a concrete surface, due to temperature change. The boundary element method is employed to investigate the behavior of interface stresses. The polymeric layer is assumed to be a linear viscoelastic material, and is thermorheologically simple. The order of the singularity is obtained, numerically, for a given viscoelastic model. Numerical results exhibit the relaxation of interface stresses, and large gradients are observed in the vicinity of the free surface. Results show that the stress singularity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model.

도로포장 구조해석을 위한 점탄성 유한요소 해석코드 개발 (Development of Viscoelastic Finite Element Analysis Code for Pavement Structures)

  • 이창준;유평준;최지영;엄병식
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-9
    • /
    • 2012
  • PURPOSES: A viscoelastic axisymmetric finite element analysis code has been developed for stress analysis of asphalt pavement structures. METHODS: Generalized Maxwell Model (GMM) and 4-node isoparametric element were employed for finite element formulation. The code was developed using $C^{+}^{+}$ computer program language and named as KICTPAVE. For the verification of the developed code, a structural model of a pavement system was constructed. The structural model was composed of three layers: asphalt layer, crushed stone layer, and soil subgrade. Two types of analysis were considered for the verification: (1)elastic static analysis, (2)viscoelastic time-dependent analysis. For the elastic static analysis, linear elastic material model was assigned to all the layers, and a static load was applied to the structural model. For the viscoelastic time-dependent analysis, GMM and linear elastic material model were assigned to the asphalt layer and all the other layers respectively, and a cyclic loading condition was applied to the structural model. RESULTS: The stresses and deformations from KICTPAVE were compared with those from ABAQUS. The analysis results obtained from the two codes showed good agreement in time-dependent response of the element under the loading area as well as the surface deformation of asphalt layer, and horizontal and vertical stresses along the axisymmetric axis. CONCLUSIONS: The validity of KICTPAVE was confirmed by showing the agreement of the analysis results from the two codes.

유한요소법을 이용한 원통체의 점탄성 응력 해석 (Viscoelastic Stress Analysis of Adhesive-bonded Cylindrical by FEM)

  • 박승진
    • 한국재난정보학회 논문집
    • /
    • 제15권2호
    • /
    • pp.259-267
    • /
    • 2019
  • 연구목적: 본 논문에서 접착제로 접착된 원통형 랩 접합부는 피착체가 탄성이고, 접착제가 선형 점탄성이라고 가정한다. 연구방법: 피착제의 응력 분포는 유한요소법을 사용하며, 4개의 아이소파라메터 점탄성 고체 접착제를 통해 피착제에 대한 해석결과를 검증한다. 연구결과: 접착층에서의 시간에 대한 응력분포와 피착제의 두께와 탄성율이 규격화에 미치는 응력의 영향을 검토한다. 결론: 본 연구는 접착제층의 점탄성을 고려한 랩접착된 원통체의 접착제층의 응력분포에 대해서 4요소 탄성체 모델을 사용하여 수치해석을 하였다.