• 제목/요약/키워드: Virus-cell fusion

검색결과 64건 처리시간 0.025초

생쥐 수정란의 핵이식에 관한 연구 I. 모성 및 부성 genome의 기능차이에 관한 연구 (Studies on nuclear transplantation in mouse embryos. I. Functional differences between maternal and paternal genomes)

  • 최상용;박충생;이효종;박희성
    • 대한수의학회지
    • /
    • 제30권2호
    • /
    • pp.123-127
    • /
    • 1990
  • 모성 및 부성 genome의 기능을 알아보기 위하여 미세조작기법과 Sendai virus를 이용한 핵융합 기술을 이용하여 2개의 자성전핵만으로 구성된 2배체의 gynogenetic 수정란을 그리고 2개의 웅성전핵만으로 구성된 2배체의 androgenetic 수정란을 인위적으로 작출하였다. 이들의 작출효율은 biparental 수정란에서는 56%, gynogenetic 수정란에서는 50% 그리고 androgenetic 수정란에서는 56% 이었다. 이들을 체외에서 배양한 결과 gynogenetic 및 androgenetic 수정란은 2-세포기 이후에는 biparental 및 intact 수정란에 비하여 그 발달능이 매우 저조하였으나 이들 중 25% 이상이 포배까지 발달한 수 있음을 확인하였다. Gynogenetic 및 androgenetic 수정란을 동기화된 수란생쥐의 난관내에 이식하였던 바, androgenetic 수정란은 전혀 착상 되지 않았으나, gynogenetic 수정란에서는 착상이 확인되었다. 핵이식기법으로 인위조작된 2배체의 biparental 수정란으로부터 28마리의 생쥐 신생자를 생산하였다.

  • PDF

Characterization of KI-24, a Novel Murine Monoclonal Antibody with Specific Reactivity for the Human Immunodeficiency Virus-1 p24 Protein

  • Shin, Song-Yub;Park, Jung-Hyun;Lee, Myung-Kyu;Jang, So-Youn;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • 제33권1호
    • /
    • pp.92-95
    • /
    • 2000
  • The HIV-1 p24(202-221) sequence ETINNEEEWDRVHPV HAGP contains a B-cell epitope with the earliest immune response and the highest antibody titer against anti-mouse sera obtained by immunization with p24 antigens. A novel mouse monoclonal antibody (mAb) was generated against the immunodominant B-cell epitope of the HIV-1 p24 capsid protein, p24(202-221). BALB/c mice were immunized with the four branched multiple antigenic peptide (MAP) containing the HIV-1p24(202-221) sequence, and antibody-secreting hybridoma were produced by fusion of mouse splenocytes with P3X63Ag8.653, mouse myeloma cells. One clone which produced the antigen-specific mAb named KI-24 (Isotype IgG1, light chain: ${\kappa}$) was identified. mAb KI-24 was highly specific for both the p24(202-221) and p24 proteins when analyzed by ELISA and Western blotting. Since p24(202-221) also contains a cytotoxic T-lymphocyte epitope, this specfic peptide epitope and the monoclonal antibody with specific reactivity against the p24 protein and p24(202-221) can be used in peptide vaccine development and p24 antigen detection from HIV patients.

  • PDF

Cloning of a Ribonucleotide Reductase Gene of the Herpes Simplex Virus Type 2 Strain G

  • Kim, Hee-Jin;Lee, Si-Kyung;Byun, Si-Myung;Lee, Hyung-Hoan
    • BMB Reports
    • /
    • 제36권5호
    • /
    • pp.514-519
    • /
    • 2003
  • The ribonucleotide reductase (RR) 2 gene of the HSV-2 strain G was cloned, sequenced, and expressed in an E. coli cell. The RR2 gene was located on the PstI 2.4 kb fragment, which was cloned and sequenced. The ORF of the gene was 1,011 bp and its termination codon was TAG; also, the CATATAA sequence was present in the promoter of the RR2 gene. A Poly A signal sequence (AATAAA) was found in the 3'-noncoding region. The RR2 proteins that were produced in the E. coli and Vero cells were confirmed using a Western blot analysis. SDS-PAGE revealed that the molecular weights of the fusion-RR2 that was produced in the E. coli cells were approximately 24 kDa and 38 kDa in the Vero cells. The RR2 proteins were soluble. The differences in the molecular weights might be due to modifications in the Vero cells.

생쥐 수정란의 핵이식에 관한 연구 II. 발달단계별 수정란 핵의 이식후 생존성 (Studies on nuclear transplantation in mouse embryos II. Developmental potential of nuclei from embryos of different developmental stages)

  • 박충생;최상용;이효종;박희성
    • 대한수의학회지
    • /
    • 제30권4호
    • /
    • pp.355-360
    • /
    • 1990
  • 포유동물의 초기 발생단계에서 핵의 분화와 전능성(totipotency) 을 규명하고, 수정란의 cloning technique를 개발하여 우량유전자로 조성된 개체를 복제함으로써 효과적인 종축개량 기법으로 응용하기 위하여 생쥐 수정란을 모델로 하여 미세조작기법과 Sendai virus를 이용한 핵융합기술을 이용하여 인위적으로 동일한 유전자를 가진 복제 수정란을 작출하고 이들의 작출효과, 체외발달능력 및 체내 이식후 개체발생여부 등을 조사하였다. 2-세포기, 4-세포기 및 8-세포기의 수정란으로부터 핵을 채취하여 이들을 탈핵된 2-세포기의 수정란에 이식하였을 때, 이들의 핵융합 성공율은 각각 88.6%, 87.1% 및 84.7%이었다. 나아가서 이들 핵융합된 수정란을 체외에서 96시간 배양한 결과, 2-세포기, 4-세포기 및 8-세포기의 핵이 이식된 수정란은 각각 76.5%, 68.4% 및 48.3%가 배반포로 발달하였다. 핵이식 후 체외에서 배반포로 발달된 수정란을 골라 수란생쥐에 이식하였던 바, 2-세포기의 핵이 이식된 수정란 156개 중 58개(37.1%) 가 발달하여 신생자로 생산되었으며, 4-세포기의 핵아 이식된 수정란 135개 중 40개(29.6%)가, 그리고 8-세포기의 핵이 이식된 92개의 수정란 중 15개(16.3%)가 신생자로 생산되었다.

  • PDF

Enhanced Transduction of Cu,Zn-Superoxide Dismutase with HIV-1 Tat Protein Transduction Domains at Both Termini

  • Eum, Won Sik;Jang, Sang Ho;Kim, Dae Won;Choi, Hee Soon;Choi, Soo Hyun;Kim, So Young;An, Jae Jin;Lee, Sun Hwa;Han, Kyuhyung;Kang, Jung Hoon;Kang, Tae-Cheon;Won, Moo Ho;Cho, Yong Joon;Choi, Jin Hi;Kim, Tae Yoon;Park, Jinseu;Choi, Soo Young
    • Molecules and Cells
    • /
    • 제19권2호
    • /
    • pp.191-197
    • /
    • 2005
  • The human immunodeficiency virus type 1 (HIV-1) Tat protein transduction domain (PTD) is responsible for highly efficient protein transduction across plasma membranes. In a previous study, we showed that Tat-Cu,Zn-superoxide dismutase (Tat-SOD) can be directly transduced into mammalian cells across the lipid membrane barrier. In this study, we fused the human SOD gene with a Tat PTD transduction vector at its N- and/or C-terminus. The fusion proteins (Tat-SOD, SOD-Tat, Tat-SOD-Tat) were purified from Escherichia coli and their ability to enter cells in vitro and in vivo compared by Western blotting and immunohistochemistry. The transduction efficiencies and biological activities of the SOD fusion protein with the Tat PTD at either terminus were equivalent and lower than the fusion protein with the Tat PTD at both termini. The availability of a more efficient SOD fusion protein provides a powerful vehicle for therapy in human diseases related to this anti-oxidant enzyme and to reactive oxygen species.

Effect of an Endoplasmic Reticulum Retention Signal Tagged to Human Anti-Rabies mAb SO57 on Its Expression in Arabidopsis and Plant Growth

  • Song, Ilchan;Lee, Young Koung;Kim, Jin Wook;Lee, Seung-Won;Park, Se Ra;Lee, Hae Kyung;Oh, Soyeon;Ko, Kinarm;Kim, Mi Kyung;Park, Soon Ju;Kim, Dae Heon;Kim, Moon-Soo;Kim, Do Sun;Ko, Kisung
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.770-779
    • /
    • 2021
  • Transgenic Arabidopsis thaliana expressing an anti-rabies monoclonal antibody (mAb), SO57, was obtained using Agrobacterium-mediated floral dip transformation. The endoplasmic reticulum (ER) retention signal Lys-Asp-Glu-Leu (KDEL) was tagged to the C-terminus of the anti-rabies mAb heavy chain to localize the mAb to the ER and enhance its accumulation. When the inaccurately folded proteins accumulated in the ER exceed its storage capacity, it results in stress that can affect plant development and growth. We generated T1 transformants and obtained homozygous T3 seeds from transgenic Arabidopsis to investigate the effect of KDEL on plant growth. The germination rate did not significantly differ between plants expressing mAb SO57 without KDEL (SO plant) and mAb SO57 with KDEL (SOK plant). The primary roots of SOK agar media grown plants were slightly shorter than those of SO plants. Transcriptomic analysis showed that expression of all 11 ER stress-related genes were not significantly changed in SOK plants relative to SO plants. SOK plants showed approximately three-fold higher mAb expression levels than those of SO plants. Consequently, the purified mAb amount per unit of SOK plant biomass was approximately three times higher than that of SO plants. A neutralization assay revealed that both plants exhibited efficient rapid fluorescent focus inhibition test values against the rabies virus relative to commercially available human rabies immunoglobulins. KDEL did not upregulate ER stress-related genes; therefore, the enhanced production of the mAb did not affect plant growth. Thus, KDEL fusion is recommended for enhancing mAb production in plant systems.

Novel Anti-Mesothelin Nanobodies and Recombinant Immunotoxins with Pseudomonas Exotoxin Catalytic Domain for Cancer Therapeutics

  • Minh Quan Nguyen;Do Hyung Kim;Hye Ji Shim;Huynh Kim Khanh Ta;Thi Luong Vu;Thi Kieu Oanh Nguyen;Jung Chae Lim;Han Choe
    • Molecules and Cells
    • /
    • 제46권12호
    • /
    • pp.764-777
    • /
    • 2023
  • Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.

Phage Display 기법을 이용한 B형 간염 바이러스 Polymerase의 RNase H 활성을 억제하는 인간 단세포군 항체의 개발 (Development of Human Antibody Inhibiting RNase H Activity of Polymerase of Hepatitis B Virus Using Phage Display Technique)

  • 이성락;송은경;정영주;이영이;김익중;최인학;박세광
    • IMMUNE NETWORK
    • /
    • 제4권1호
    • /
    • pp.16-22
    • /
    • 2004
  • Background: To develop a novel treatment strategy for hepatitis B virus infection, a major cause of liver chirosis and cancer, we aimed to make human monoclonal antibodies inhibiting RNase H activity of P protein playing in important role in HBV replication. In this regard, phage display technology was employed and demonstrated as an efficient cloning method for human monoclonal antibody. So this study analysed the usability of human monoclonal antibody as protein based gene therapy. Methods: RNase H of HBV was expressed as fusion protein with maltose binding protein and purified with amylose resin column. Single chain Fv (scFv) phage antibody library was constructed by PCR cloning using total RNAs of PBMC from 50 healthy volunteers. Binders to RNase H were selected with BIAcore 2000 from the constructed library, and purified as soluble antibody fragment. The affinity and sequences of selected antibody fragments were analyzed with BIAcore and ABI automatic sequencer, respectively. And finally RNase H activity inhibiting assay was carried out. Results: Recombinant RNase H expressed in E. coli exhibited an proper enzyme activity. Naive library of $4.46{\times}10^9cfu$ was screened by BIAcore 2000. Two clones, RN41 and RN56, showed affinity of $4.5{\times}10^{-7}M$ and $1.9{\times}10^{-7}M$, respectively. But RNase H inhibiting activity of RN41 was higher than that of RN56. Conclusion: We cloned human monoclonal antibodies inhibiting RNase H activity of P protein of HBV. These antibodies can be expected to be a good candidate for protein-based antiviral therapy by preventing a replication of HBV if they can be expressed intracellularly in HBV-infected hepatocytes.

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.20-20
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.97-97
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF