• Title/Summary/Keyword: Virus database

Search Result 64, Processing Time 0.026 seconds

Construction of a Genetic Information Database for Analysis of Oncolytic Viruses

  • Cho, Myeongji;Son, Hyeon Seok;Kim, Hayeon
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.90-97
    • /
    • 2020
  • Oncolytic viruses are characterized by their ability to selectively kill cancer cells, and thus they have potential for application as novel anticancer agents. Despite an increase in the number of studies on methodologies involving oncolytic viruses, bioinformatic studies generating useful data are lacking. We constructed a database for oncolytic virus research (the oncolytic virus database, OVDB) by integrating scattered genetic information on oncolytic viruses and proposed a systematic means of using the biological data in the database. Our database provides data on 14 oncolytic viral strains and other types of viruses for comparative analysis. We constructed the OVDB using the basic local alignment search tool, and therefore can provides genetic information on highly homologous oncolytic viruses. This study contributes to facilitate systematic bioinformatics research, providing valuable data for development of oncolytic virus-based anticancer therapies.

Genome-Based Virus Taxonomy with the ICTV Database Extension

  • Kang, Shinduck;Kim, Young-Chang
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.22.1-22.5
    • /
    • 2018
  • In 1966, the International Classification of Viruses (ICNV) was established to standardize the naming of viruses. In 1975, the organization was renamed "International Committee on Taxonomy of Viruses (ICTV)," by which it is still known today. The primary virus classification provided by ICTV in 1971 was for viruses infecting vertebrates, which includes 19 genera, 2 families, and 24 unclassified groups. Presently, the 10th virus taxonomy has been published. However, the early classification of viruses was based on clinical results "in vivo" and "in vitro," as well as on the shape of the Phenotype virus. Due to the development of next-generation sequencing and the accompanying bioinformatics analysis pipelines, a reconstruction of the classification system has been proposed. At a meeting held in Boston, USA between June 9-11, 2016, there was even an in-depth discussion regarding the classification of viruses using metagenomic data. One suggested activity that arose from the meeting was that viral taxonomy should be reconstructed, based on genotype and bioinformatics analysis "in silico." This article describes our efforts to achieve this goal by construction of a web-based system and the extension of an associated database, based on ICTV taxonomy. This virus taxonomy web system was designed specifically to extend the virus taxonomy up to strain and isolation, which was then connected with the NCBI database to facilitate searches for specific viral genes; there are also links to journals provided by the EMBL RESTful API that improves accessibility for academic groups.

Data-processing pipeline and database design for integrated analysis of mycoviruses

  • Je, Mikyung;Son, Hyeon Seok;Kim, Hayeon
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.115-122
    • /
    • 2019
  • Recent and ongoing discoveries of mycoviruses with new properties demand the development of an appropriate research infrastructure to analyze their evolution and classification. In particular, the discovery of negative-sense single-stranded mycoviruses is worth noting in genome types in which double-stranded RNA virus and positive-sense single-stranded RNA virus were predominant. In addition, some genomic properties of mycoviruses are more interesting because they have been reported to have similarities with the pathogenic virus family that infects humans and animals. Genetic information on mycoviruses continues to accumulate in public repositories; however, these databases have some difficulty reflecting the latest taxonomic information and obtaining specialized data for mycoviruses. Therefore, in this study, we developed a bioinformatics-based pipeline to efficiently utilize this genetic information. We also designed a schema for data processing and database construction and an algorithm to keep taxonomic information of mycoviruses up to date. The pipeline and database (termed 'mycoVDB') presented in this study are expected to serve as useful foundations for improving the accuracy and efficiency of future research on mycoviruses.

Partial Sequence Analysis of Puumala Virus M Segment from Bats in Korea

  • Yun, Bo-Kyoung;Yoon, Jeong-Joong;Lee, Yun-Tai
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.1
    • /
    • pp.23-31
    • /
    • 1999
  • Hantavirus is a genus of the Bunyaviridae family causing two serious diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Puumala virus is a member of hantavirus originally found in Europe, and its natural reservoir is Clethrionomys glareolus. It is also associated with the human disease nephropathia epidemica, a milder form of HFRS. To identify the hantaviruses in bats, bats were collected from Jeong-Sun, Won-Joo, Chung-Ju and Hwa-Cheon area in Korea, and nested RT-PCR was performed with serotype specific primer from M segment. Interestingly, Puumala virus was detected in bats (Rhinolophus ferrum-equinum) only from Won-Joo. The 327 bp nested RT-PCR product, was sequenced. The sequence database search indicates that the sequence is homologous to the published sequence of Puumala viruses. The sequence similarities were ranged from 71% to 97%. The highest sequence similarity was 97% with Puumala virus Vranicam strain, and the lowest was 71% with Puumala virus K27 isolate. Puumala virus Vranicam strain was isolated from a bank vole (Clethrionomys glareolus) in Bosnia-Hercegovina. Puumala virus K27 was isolated from human in Russia. This analysis confirms that bats (Rhinolophus ferrum-equinum) in Korea are natural reservoir of Puumala virus.

  • PDF

Outbreak of Cucumber mosaic virus and Tomato spotted wilt virus on Bell Pepper Grown in Jeonnam Province in Korea

  • Mun, Hye-Yeon;Park, Mi-Ri;Lee, Hyang-Burm;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.93-96
    • /
    • 2008
  • In August 2006, a severe disease incidence showing mosaic and/or necrotic symptoms on two bell pepper varieties including red-colored 'Special' and yellow-colored 'Fiesta' was observed in a greenhouse located in Gwangyang, Jeonnam province, Korea. To identify causal viruses, total RNAs were extracted from 11 fruit samples with and without symptoms. Specific oligonucleotide primers for Cucumber mosaic virus (CMV), Pepper mottle virus (PepMoV), Tomato spotted wilt virus (TSWV) and Pepper mild mottle virus (PMMoV) were designed based on the sequences available on GenBank. Database comparisons of the deduced amino acid sequences of each sequence produced 100% and 98% matches with nucleocapsid protein gene of TSWV (Acc. No. ABE11605) and coat protein gene of CMV (Acc. No. DQ018289), respectively, suggesting that the symptoms on bell pepper fruits might be caused by the infection of CMV and TSWV. To our knowledge this is the first report of necrotic as well as mosaic virus disease on bell pepper fruits by the infection of CMV and TSWV in Jeonnam province, Korea.

Identification of Viral Taxon-Specific Genes (VTSG): Application to Caliciviridae

  • Kang, Shinduck;Kim, Young-Chang
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.23.1-23.5
    • /
    • 2018
  • Virus taxonomy was initially determined by clinical experiments based on phenotype. However, with the development of sequence analysis methods, genotype-based classification was also applied. With the development of genome sequence analysis technology, there is an increasing demand for virus taxonomy to be extended from in vivo and in vitro to in silico. In this study, we verified the consistency of the current International Committee on Taxonomy of Viruses taxonomy using an in silico approach, aiming to identify the specific sequence for each virus. We applied this approach to norovirus in Caliciviridae, which causes 90% of gastroenteritis cases worldwide. First, based on the dogma "protein structure determines its function," we hypothesized that the specific sequence can be identified by the specific structure. Firstly, we extracted the coding region (CDS). Secondly, the CDS protein sequences of each genus were annotated by the conserved domain database (CDD) search. Finally, the conserved domains of each genus in Caliciviridae are classified by RPS-BLAST with CDD. The analysis result is that Caliciviridae has sequences including RNA helicase in common. In case of Norovirus, Calicivirus coat protein C terminal and viral polyprotein N-terminal appears as a specific domain in Caliciviridae. It does not include in the other genera in Caliciviridae. If this method is utilized to detect specific conserved domains, it can be used as classification keywords based on protein functional structure. After determining the specific protein domains, the specific protein domain sequences would be converted to gene sequences. This sequences would be re-used one of viral bio-marks.

Characterization of Tomato spotted wilt virus from Paprika in Korea

  • Choi, Gug-Seoun;Kim, Jeong-Soo;Choi, Jang-Kyung;Kim, Jae-Hyun
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.297-301
    • /
    • 2004
  • A Tomato spotted wilt virus (TSWV-KP) was isolated from Paprika (Capsicum annuum var. grossum) showing necrosis spot on the leaves and malformation of the fruit in Yesan, Korea. The virus infected Chenopodium amaranticolor, C. quinoa, Petunia hybrida, Nicotiana glutunosa, Gomphrena globosa, and Physalis floridana. Ten plants including tomato were observed to have systemic TWSV-KP infection. The virus produced necrosis or necrotic ring spots on the inoculated leaves and mosaic, vein necrosis or death on the upper leaves of Datura stramonium, N. clevarandii, N. rustica, and N.tabacum cvs. Thin sections of the infected leaf tissue contained spherical to oval particles, a characteristic of a Tospovirus. The virion contained three molecules of genomic RNAs, which were approximately 9.0, 4.9 and 3.0 kb. The nucleocapsid (N) protein of the purified virion migrated as a single band with molecular weight of about 29 kDa in SDS-PAGE. The N gene of TSWV-KP showed 96.5-97.2% and 97.7-98.5% identities to the three different TSWV isolates of Genbank Database at the nucleotide and amino acid, respectively.

Taxonomy of plant virus and role of the ICTV database

  • Ryu, Ki-Hyun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.28-28
    • /
    • 2003
  • The International Committee for Taxonomy of Viruses (ICTV), which was formed over 30 years ago, aims to develop a single, universal taxonomic scheme for all viruses or, in other words, "the classification of viruses and the assignment of names to taxa". Plant Virus taxonomy is in charge of Plant Virus Subcommittee, a substructure of the ICTV. The ICTV has been most successfully pursuing that aim and its mammoth 'Seventh Report' records details of the names it has collated and approved, and of the classification, it has devised. The current 7th ICTV report published in 2000 contains plant viruses of 951 species in 79 genera in 17 families, though 24 of the 79 genera are floating genera, that is, they are not included in any established families. Proposed name of new or existing viruses are vote for the accepted taxonomic proposals by ICTV Executive Committee meeting. The approved results have been published as the ICTV reports providing standard names and taxa of viruses all over the world. A number of new plant viruses have been identified or reclassified in the genus or species level, and new genera and families have been proposed.(중략)

  • PDF

Prediction of Common Peptide Vaccine forHuman Infective Major Flavivirus by Using Bioinformatics (생물정보학을 이용한 인체 감염주요 플라비바이러스 공통백신 후보군 도출)

  • Kim, Min Jung;Jo, Byung-Gwan;Heo, Jae-Rin;Choi, Jae-Won;Kim, Hak Yong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.297-298
    • /
    • 2017
  • 플라비바이러스(Flavivirus)는 모기와 같은 곤충을 매개로 하여 인체에 감염된다고 잘 알려져 있다. 그 대표적인 예로 지카 바이러스(Zika virus), 뎅기 바이러스(Dengue virus), 황열 바이러스(Yellow fever virus), 일본 뇌염 바이러스(Japanese encephalitis virus) 등을 들 수 있다. 본 연구에서는 생물정보학을 기반으로 인체 감염 주요 플라비바이러스인 지카 바이러스, 뎅기 바이러스. 황열 바이러스, 일본 뇌염 바이러스의 총 4종류 플라비바이러스에 공통적으로 적용 가능한 펩타이드 백신 후보를 제시하고자 한다. 먼저 UniProt (The Universal Protein Resource)의 유전자 서열정보를 이용하여 4종류의 바이러스가 가진 단백질 중 백신으로써 적합한 단백질을 선정하였다. 선정된 단백질의 아미노산 서열정보를 바탕으로 IEDB (Immune Epitope Database And Analysis Resource)를 활용한 에피토프(epitope) 분석을 통해 에피토프로 작용하는 4 종류 바이러스의 공통적인 서열을 도출하였다.

  • PDF

Identification of Cherry green ring mottle virus on Sweet Cherry Trees in Korea (국내 양앵두나무에서 발생한 Cherry green ring mottle virus 동정)

  • Cho, In-Sook;Choi, Gug-Seoun;Choi, Seung-Kook
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.326-330
    • /
    • 2013
  • During the 2012 growing season, 154 leaf samples were collected from sweet cherry trees in Hwaseong, Pyeongtaek, Gyeongju, Kimcheon, Daegu, Yeongju and Eumseong and tested for the presence of Cherry green ring mottle virus (CGRMV). PCR products of the expected size (807 bp) were obtained from 6 samples. The PCR products were cloned and sequenced. The nucleotide sequences of the clones showed over 88% identities to published coat protein sequences of CGRMV isolates in the GenBank database. The sequences of CGRMV isolates, CGR-KO 1-6 shared 98.8 to 99.8% nucleotide and 99.6 to 100% amino acid similarities. Phylogenetic analysis indicated that the Korean CGRMV isolates belong to the group II of CGRMV coat protein genes. The CGRMV infected sweet cherry trees were also tested for Apple chlorotic leaf spot virus (ACLSV), Apple mosaic virus (ApMV), Cherry necrotic rusty mottle virus (CNRMV), Cherry mottle leaf virus (CMLV), Cherry rasp leaf virus (CRLV), Cherry leafroll virus (CLRV), Cherry virus A (CVA), Little cherry virus 1 (LChV1), Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) by RT-PCR. All of the tested trees were also infected with ACLSV.