• Title/Summary/Keyword: Virtual work theory

Search Result 162, Processing Time 0.019 seconds

Scaled Boundary Finite Element Methods for Non-Homogeneous Half Plane (비동질 반무한 평면에서의 비례경계유한요소법)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.127-136
    • /
    • 2007
  • In this paper, the equations of the scaled boundary finite element method are derived for non-homogeneous half plane and analyzed numerically In the scaled boundary finite element method, partial differential equations are weaken in the circumferential direction by approximation scheme such as the finite element method, and the radial direction of equations remain in analytical form. The scaled boundary equations of non-homogeneous half plane, its elastic modulus varies as power function, are newly derived by the virtual work theory. It is shown that the governing equation of this problem is the Euler-Cauchy equation, therefore, the logarithm mode used in the half plane problem is not valid in this problem. Two numerical examples are analysed for the verification and the feasibility.

Buckling failure of 310 stainless steel tubes with different diameter-to-thickness ratios under cyclic bending

  • Chang, Kao-Hua;Lee, Kuo-Long;Pan, Wen-Fung
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.245-260
    • /
    • 2010
  • In this paper, experimental and theoretical investigations on the response and collapse of 310 stainless steel tubes with different diameter-to-thickness ratios subjected to cyclic bending are discussed. The tube-bending device and curvature-ovalization measurement apparatus were used to conduct the experiment. The endochronic theory combined with the principle of virtual work and finite element software, ANSYS, were used to simulate the moment-curvature and ovalization-curvature relationships. It is shown that although the two methods lead to good simulation of the moment-curvature relationship, the endochronic theory combined with the principle of virtual work has the better simulation of the ovalization-curvature response when compared with experimental data and the simulation by ANSYS. In addition, the theoretical formulations proposed by Kyriakides and Shaw (1987) and Lee et al. (2001) were used to simulate the controlled curvature-number of cycles to produce buckling relationship. It is shown that the theoretical formulations effectively simulate the experimental data.

A Study on Hyper-Reality of Fashion by Work of Art (예술작품을 통해 나타난 패션의 하이퍼리얼리티 연구)

  • Minah, Jung
    • Journal of Fashion Business
    • /
    • v.26 no.5
    • /
    • pp.76-90
    • /
    • 2022
  • The rapid growth and influence of digital technologies have had a profound effect on modern society. Companies and businesses can connect through SNS(social network service accounts). The importance of mass media empowers the creation of virtual images that are more realistic than time and space. Unlike traditional reproduction or imitation, the virtual images created in this way are reproduced in a form that lacks the original inspiration's essence. Jean Baudrillard described this phenomenon as the theory of simulation. Baudrillard argued that imitated simulated images replace reality. He stated that reality is lost under excessive images in modern society. In response, based on an understanding of the theory of hyper-reality that emerged through the late stages of the order of simulacre, this study aimed to analyze modern fashion's method of reproducing hyper-real images and investigate the method's characteristics. This study examined the characteristics of hyper-reality described by Baudrillard and analyzed the method of artistic expression of hyper-reality. Based on this method of expression, reproducibility, following the stages of image simulation, was derived. A specific case applied to fashion was analyzed, and based on the image reproduction method, specific characteristics of hyper-reality characteristics in fashion were obtained. Sixty-four collections were selected, out of which 155 images and 43 brands demonstrated the principles of image transformation.

Analytical and finite element method for the bending analysis of the thick porous functionally graded sandwich plate including thickness stretching effect

  • Imad Benameur;Youcef Beldjelili;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.593-605
    • /
    • 2023
  • This work presents a comparison between analytical and finite element analysis for bending of porous sandwich functionally graded material (FGM) plates. The plate is rectangular and simply supported under static sinusoidal loading. Material properties of FGM are assumed to vary continuously across the face sheets thickness according to a power-law function in terms of the volume fractions of the constituents while the core is homogeneous. Four types of porosity are considered. A refined higher-order shear with normal deformation theory is used. The number of unknowns in this theory is five, as against six or more in other shear and normal deformation theories. This theory assumes the nonlinear variation of transverse shear stresses and satisfies its nullity in the top and bottom surfaces of the plate without the use of a shear correction factor. The governing equations of equilibrium are derived from the virtual work principle. The Navier approach is used to solve equilibrium equations. The constitutive law of the porous FGM sandwich plate is implemented for a 3D finite element through a subroutine in FORTRAN (UMAT) in Abaqus software. Results show good agreement between the finite element model and the analytical method for some results, but the analytical method keeps giving symmetric results even with the thickness stretching effect and load applied to the top surface of the sandwich.

A novel four-unknown quasi-3D shear deformation theory for functionally graded plates

  • Hebbar, Nabil;Bourada, Mohamed;Sekkal, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.599-611
    • /
    • 2018
  • In this article a four unknown quasi-3D shear deformation theory for the bending analysis of functionally graded (FG) plates is developed. The advantage of this theory is that, in addition to introducing the thickness stretching impact (${\varepsilon}_z{\neq}0$), the displacement field is modeled with only four variables, which is even less than the first order shear deformation theory (FSDT). The principle of virtual work is utilized to determine the governing equations. The obtained numerical results from the proposed theory are compared with the CPT, FSDT, and other quasi-3D HSDTs.

Analysis of laminated and sandwich spherical shells using a new higher-order theory

  • Shinde, Bharti M.;Sayyad, Atteshamudin S.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.19-40
    • /
    • 2020
  • In the present study, a fifth-order shear and normal deformation theory using a polynomial function in the displacement field is developed and employed for the static analysis of laminated composite and sandwich simply supported spherical shells subjected to sinusoidal load. The significant feature of the present theory is that it considers the effect of transverse normal strain in the displacement field which is eliminated in classical, first-order and many higher-order shell theories, while predicting the bending behavior of the shell. The present theory satisfies the zero transverse shear stress conditions at the top and bottom surfaces of the shell. The governing equations and boundary conditions are derived using the principle of virtual work. To solve the governing equations, the Navier solution procedure is employed. The obtained results are compared with Reddy's and Mindlin's theory for the validation of the present theory.

Fundamental theory of curved structures from a non-tensorial point of view

  • Paavola, Juha;Salonen, Eero-Matti
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.159-180
    • /
    • 1999
  • The present paper shows a new non-tensorial approach to derive basic equations for various structural analyses. It can be used directly in numerical computation procedures. The aim of the paper is, however, to show that the approach serves as an excellent tool for analytical purposes also, working as a link between analytical and numerical techniques. The paper gives a method to derive, at first, expressions for strains in general beam and shell analyses, and secondly, the governing equilibrium equations. The approach is based on the utilization of local fixed Cartesian coordinate systems. Applying these, all the definitions required are the simple basic ones, well-known from the analyses in common global coordinates. In addition, the familiar principle of virtual work has been adopted. The method will be, apparently, most powerful in teaching the theories of curved beam and shell structures for students not familiar with tensor analysis. The final results obtained have no novelty value in themselves, but the procedure developed opens through its systematic and graphic progress a new standpoint to theoretical considerations.

Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory

  • Sadoun, Mohamed;Houari, Mohammed Sid Ahmed;Bakora, Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.;Alwabli, Afaf S.
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 2018
  • In this current work a quasi 3D "trigonometric shear deformation theory" is proposed and discussed for the dynamic of thick orthotropic plates. Contrary to the classical "higher order shear deformation theories" (HSDT) and the "first shear deformation theory" (FSDT), the constructed theory utilizes a new displacement field which includes "undetermined integral terms" and presents only three "variables". In this model the axial displacement utilizes sinusoidal mathematical function in terms of z coordinate to introduce the shear strain impact. The cosine mathematical function in terms of z coordinate is employed in vertical displacement to introduce the impact of transverse "normal deformation". The motion equations of the model are found via the concept of virtual work. Numerical results found for frequency of "flexural mode", mode of shear and mode of thickness stretch impact of dynamic of simply supported "orthotropic" structures are compared and verified with those of other HSDTs and method of elasticity wherever considered.

A Study on Virtual Training System for Education of Train Maintenance (철도 차량 정비 교육을 위한 가상훈련 시스템 설계에 관한 연구)

  • Jeong, Jin-hyun;Song, Eun-jee
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.103-109
    • /
    • 2016
  • In order to get the maintenance work for the normal operation of rail vehicles made safe maintenance training, which looked suffered direct physical train maintenance environment, gain experience to get out foster the practical skills, but experience the real maintenance in operational problems the maintenance procedures followed are difficult to be. So it can gain experience and knowledge of the actual maintenance work in safe conditions if you apply a simulation experience in a similar environment as possible to the actual train maintenance training can also reduce operational training costs. For a description of the current domestic and simulation programs of the railway sector it has been operating in overseas and is designed to train intensive training, maintenance and maintenance-related information is scarce situation. In this study, the contents of the theory of educational technology for effective training of train maintenance elements exhibit theory, theory of learning situations, designed to train maintenance training simulation through a previous study that investigated the problem-based learning theory.

Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory

  • Dehsaraji, M. Lori;Saidi, A.R.;Mohammadi, M.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.259-269
    • /
    • 2020
  • In this paper, bending-stretching analysis of thick functionally graded piezoelectric rectangular plates is studied using the higher-order shear and normal deformable plate theory. On the basis of this theory, Legendre polynomials are used for approximating the components of displacement field. Also, the effects of both normal and shear deformations are encountered in the theory. The governing equations are derived using the principle of virtual work and variational approach. It is assumed that plate is made of piezoelectric materials with functionally graded distribution of material properties. Hence, exponential function is used to modify mechanical and electrical properties through the thickness of the plate. Finally, the effect of material properties, electrical boundary conditions and dimensions are investigated on the static response of plate. Also, it is shown that results of the presented model are close to the three dimensional elasticity solutions.