• Title/Summary/Keyword: Virtual wall

Search Result 108, Processing Time 0.028 seconds

On the Stability and Performance Limits of the Force Reflecting Haptic Manipulator (가상반발력을 생성하는 햅틱장비의 안정성과 성능한계에 관한 연구)

  • ;Greg R. Luecke
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.180-187
    • /
    • 1998
  • The stability and theoretical performance limits of the feedback controlled force reflecting haptic manipulator have been discussed. All the virtual environment which interact physically with the haptic system have its own stable performance limit. Three different realization of the interfaces have been compared using the driving point admittance. The haptic system which is separated from the human hand or finger is superior to its stable interaction provided that there is a means to apply a direct damping between the haptic manipulator and the human finger Electro-magnetic force is used for its digital implementation of the simple separated type haptic device. The stable limits of a virtual wall is calculated and experimental results show that there is performance limits in this implementation.

  • PDF

Design of a novel haptic mouse system

  • Choi, Hee-Jin;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.51.4-51
    • /
    • 2002
  • $\textbullet$ A noval haptic mouse system is developed for human computer interface. $\textbullet$ Five bar mechanism is adapted for 2 dof force feedback with virtual environment. $\textbullet$ Double prismatic joint type mechanism is adapted to reflect 1 dof grabbing force feedback. $\textbullet$ Cable driven mechansim is used for actuation to reduce backlash and endow backdrivability. $\textbullet$ Virtual wall perception experiment is conducted to obtain force specification for haptic mouse. $\textbullet$ Average mouse workspace is measured using magnetic position tracker.

  • PDF

A New Curve Modeling Tool with the Acoustic Reflection for the Virtual Spatial Conceptual Sketch (가상 공간 개념 스케치를 위한 음향 반향을 포함하는 새로운 곡선 모델링 도구)

  • Choi, Sang-Min;Kim, Hark-Su;Chai, Young-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.281-289
    • /
    • 2009
  • In this paper, a new interaction technique with the virtual single or dual acoustic reflection tablet is proposed to support the perception of depth cue and implement the effective spatial input systems of reducing the depth errors in general spatial sketching tasks. And several experiments show that the virtual wall with acoustic reflections can be thought of as a meaningful feedback for the plausible virtual conceptual design. By using the proposed idea, the degree of agreement to the target model is increased by 35% due to the single acoustic reflection tablet in the constant depth plane. In the slanted plane, the degree of agreement is increased by 8% due to the dual acoustic reflection compared to the single acoustic reflection and the degree of agreement is increased by 15% on the curved vase.

  • PDF

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.

Database of virtual spectrum of artificial radionuclides for education and training in in-situ gamma spectrometry

  • Yoomi Choi;Young-Yong Ji;Sungyeop Joung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.190-200
    • /
    • 2023
  • As the field of application of in-situ gamma spectroscopy is diversified, proficiency is required for consistent and accurate analysis. In this study, a program was developed to virtually create gamma energy spectra of artificial nuclides, which are difficult to obtain through actual measurements, for training. The virtual spectrum was created by synthesizing the spectra of the background radiation obtained through actual measurement and the theoretical spectra of the artificial radionuclides obtained by a Monte Carlo simulation. Since the theoretical spectrum can only be obtained for a given geometrical structure, representative major geometries for in-situ measurement (ground surface, concrete wall, radioactive waste drum) and the detectors (HPGe, NaI(Tl), LaBr3(Ce)) were predetermined. Generated virtual spectra were verified in terms of validity and harmonization by gamma spectrometry and energy calibration. As a result, it was confirmed that the energy calibration results including the peaks of the measured spectrum and the peaks of the theoretical spectrum showed differences of less than 1 keV from the actual energies, and that the calculated radioactivity showed a difference within 20% from the actual inputted radioactivity. The verified data were assembled into a database and a program that can generate a virtual spectrum of desired condition was developed.

Control method of PC cluster based multi-projection display systems (PC 클러스터기반 멀티프로젝션 디스플레이 시스템 제어 방법)

  • Jo, Dong-Sik;Kim, Gi-Beom;Kang, Hyun;Son, Wook-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.449-454
    • /
    • 2006
  • 최근 PC 클러스터를 이용한 초고해상도 영상표현 시스템(예: PowerWall$^{TM}$) 혹은 몰입형 가상환경 표현시스템 (예: CAVE$^{TM}$, RealityCenters$^{TM}$) 등과 같은 멀티프로젝션 디스플레이 시스템은 산업, 군사, 과학, 의학 등에 널리 활용되고 있다. 하지만, 이와 같은 멀티프로젝션 디스플레이 시스템은 다수의 PC 클러스터와 프로젝터의 연결에 의해 구성이 되기 때문에 그 제어 방법은 각각의 PC 및 프로젝터의 프로그램과 동작을 반복적으로 실행하여야 한다. 이에 PC 클러스터 및 프로젝터의 직관적인 제어가 가능하고 일괄적으로 운용할 수 있는 환경이 필요하다. 본 연구에서는 멀티프로젝션 디스플레이 시스템의 PC 클러스터 및 프로젝터의 제어와 운용에 관한 것으로, PC 클러스터에 필요한 응용프로그램 일괄실행, 일괄 power 처리와 프로젝터에 필요한 일시중지(Mute), 입력소스선택, 일괄 power on/off 수행 등에 관한 효과적인 인터페이스의 구현 및 제어 방법을 제시하고자 한다.

  • PDF

Control and Evaluation of a New 6-DOF Haptic Device Using a Parallel Mechanism (병렬구조를 이용한 새로운 6자유도 역감제시 장치의 제어 및 평가)

  • Yun, Jeong-Won;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.160-167
    • /
    • 2001
  • This paper presents control and evaluation of a new haptic device with a 6-DOF parallel mechanism for interfacing with virtual reality. This haptic device has low inertial, high bandwidth compactness, and high output force capability mainly due to of base-fixed motors. It has also wider orientation workspace mainly due to a RRR type spherical joint. A control method is presented with gravity compensation and with force feedback by an F/T sensor to compensate for the effects of unmodeled dynamics such as friction and inertia. Also, dynamic performance has been evaluated by experiments. for force characteristics such as maximum applicable force, static-friction force, minimum controllable force, and force bandwidth Virtual wall simulation with the developed haptic device has been demonstrated.

  • PDF

In-plane seismic performance of masonry wall retrofitted with prestressed steel-bar truss

  • Hwang, Seung-Hyeon;Kim, Sanghee;Yang, Keun-Hyeok
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.459-469
    • /
    • 2020
  • An external prestressed steel-bar truss unit was developed as a new strengthening technology to enhance the seismic performance of an in-plane masonry wall structure while taking advantage of the benefits of a prestressed system. The presented method consists of six steel bars: two prestressed vertical bars to introduce a prestressing force on the masonry wall, two diagonal bars to resist shear deformation, and two horizontal bars to maintain the configuration. To evaluate the effects of this new technique, four full-scale specimens, including a control specimen, were tested under combined loadings that included constant-gravity axial loads and cyclic lateral loads. The experimental results were analyzed in terms of the shear strength, initial stiffness, dissipated energy, and strain history. The efficiency of the external prestressed steel-bar truss unit was validated. In particular, a retrofitted specimen with an axial load level of 0.024 exhibited a more stable post behavior and higher energy dissipation than a control specimen with an observed complete sliding failure. The four vertical bars of the adjacent retrofitting units created a virtual column, and their strain values did not change until they reached the peak shear strength. The shear capacity of the masonry wall structure with external prestressed steel-bar truss units could be predicted using the model suggested by Yang et al.

Control of a Master/Slave Combined Surgical Robot for Total Hip Arthroplasty (마스터/슬레이브 복합형 고관절 전치환 수술로봇의 제어)

  • Heo, Gwan-Hoe;Gwon, Dong-Su;Kim, Sang-Yeon;Lee, Jeong-Ju;Yun, Yong-San
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.788-794
    • /
    • 2002
  • To improve surgical result of total hip arthroplasty (THA), there has been some approaches using a robotic milling system, which can make a precise cavity in the femur. Usually, to carve a femur, the surgical robot is controlled by a pre-programmed tool-path regardless of a surgeon's experience and Judgment. This paper presents a control method of a surgical robot for THA, which can be used as an advanced surgical tool. With a master/slave combined surgical robot, surgeon can directly control the motion and velocity of a surgical robot. The master/slave-combined robot is controlled to display a specific admittance for a surgeon's force to the surgical robot velocity. To prevent the over-carving of a femur, virtual hard wall is displayed on the surgical boundary. To evaluate the proposed control method of the master/slave-combined surgical robot, 2-DOF master/slave-combined manipulator is used in experiment.

Control Algorithm of a Wearable Walking Robot for a Patient with Hemiplegia (편마비 환자를 위한 착용형 보행 로봇 제어 알고리즘 개발)

  • Cho, Changhyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.323-329
    • /
    • 2020
  • This paper presents a control algorithm for a wearable walking aid robot for subjects with paraplegia after stroke. After a stroke, a slow, asymmetrical and unstable gait pattern is observed in a number of patients. In many cases, one leg can move in a relatively normal pattern, while the other leg is dysfunctional due to paralysis. We have adopted the so-called assist-as-needed control that encourages the patient to walk as much as possible while the robot assists as necessary to create the gait motion of the paralyzed leg. A virtual wall was implemented for the assist-as-needed control. A position based admittance controller was applied in the swing phase to follow human intentions for both the normal and paralyzed legs. A position controller was applied in the stance phase for both legs. A power controller was applied to obtain stable performance in that the output power of the system was delimited during the sample interval. In order to verify the proposed control algorithm, we performed a simulation with 1-DOF leg models. The preliminary results have shown that the control algorithm can follow human intentions during the swing phase by providing as much assistance as needed. In addition, the virtual wall effectively guided the paralyzed leg with stable force display.