• Title/Summary/Keyword: Virtual sub-matrix

Search Result 3, Processing Time 0.017 seconds

In-depth Analysis and Performance Improvement of a Flash Disk-based Matrix Transposition Algorithm (플래시 디스크 기반 행렬전치 알고리즘 심층 분석 및 성능개선)

  • Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.377-384
    • /
    • 2017
  • The scope of the matrix application is so broad that it can not be limited. A typical matrix application area in computer science is image processing. Particularly, radar scanning equipment implemented on a small embedded system requires real-time matrix transposition for image processing, and since its memory size is small, a general matrix transposition algorithm can not be applied. In this case, matrix transposition must be done in disk space, such as flash disk, using a limited memory buffer. In this paper, we analyze and improve a recently published flash disk-based matrix transposition algorithm named as asymmetric sub-matrix transposition algorithm. The performance analysis shows that the asymmetric sub-matrix transposition algorithm has lower performance than the conventional sub-matrix transposition algorithm, but the improved asymmetric sub-matrix transposition algorithm is superior to the sub-matrix transposition algorithm in 13 of the 16 experimental data.

The Analysis of Competition Structure in Business Data Service Market Using Henry Model and Suggestion for Competitive Strategies (Hendry Model을 활용한 기업용데이터서비스시장의 경쟁구조 분석 및 전략 제언)

  • 유광숙;최문기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12C
    • /
    • pp.280-291
    • /
    • 2001
  • LL (Leased Line service) is a facility-based service as a traditional business data service, but new competition services, such as FR (Frame Relay), VPN (Virtual Private Network), and ATM (Asynchronous Transfer Mode), are value-added services. Because of different service classifications, it is hard to gather necessary data for the service providers to plan their market strategies and regulations and policies are also applied asymmetrically to each service provider. Therefore an appropriate market classification is required for the business data services. After various methods of market classification are reviewed, the Hendry model is selected in this paper to analyze substitution-degree among brands or among services. Since the structure of virtual competitions is required for the Hendry model to be applied to data service market, the market is analyzed first by the well-known Porter's model. By the analysis of Porter's model, two virtual competition structures are set up - one is for the competitions among leased line service providers, and the other is for the competitions among business data services such as LL, FR, VPN and ATM. After the Hendry model is applied to each competition structure, it is confirmed that 7 LL service providers do not compete directly, but 2 sub-markets exist for the LL service provisions. However, it is shown that 4 business data services compete directly. Using the Switching Probability Matrix from Hendry model, future market shares of LL service providers and market shares of business data services are forecasted. These empirical results are helpful for service providers to set competitive strategies with the minimization of cannibalization effect and they can easily and efficiently predict their market demands.

  • PDF

Conditional Generative Adversarial Network based Collaborative Filtering Recommendation System (Conditional Generative Adversarial Network(CGAN) 기반 협업 필터링 추천 시스템)

  • Kang, Soyi;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.157-173
    • /
    • 2021
  • With the development of information technology, the amount of available information increases daily. However, having access to so much information makes it difficult for users to easily find the information they seek. Users want a visualized system that reduces information retrieval and learning time, saving them from personally reading and judging all available information. As a result, recommendation systems are an increasingly important technologies that are essential to the business. Collaborative filtering is used in various fields with excellent performance because recommendations are made based on similar user interests and preferences. However, limitations do exist. Sparsity occurs when user-item preference information is insufficient, and is the main limitation of collaborative filtering. The evaluation value of the user item matrix may be distorted by the data depending on the popularity of the product, or there may be new users who have not yet evaluated the value. The lack of historical data to identify consumer preferences is referred to as data sparsity, and various methods have been studied to address these problems. However, most attempts to solve the sparsity problem are not optimal because they can only be applied when additional data such as users' personal information, social networks, or characteristics of items are included. Another problem is that real-world score data are mostly biased to high scores, resulting in severe imbalances. One cause of this imbalance distribution is the purchasing bias, in which only users with high product ratings purchase products, so those with low ratings are less likely to purchase products and thus do not leave negative product reviews. Due to these characteristics, unlike most users' actual preferences, reviews by users who purchase products are more likely to be positive. Therefore, the actual rating data is over-learned in many classes with high incidence due to its biased characteristics, distorting the market. Applying collaborative filtering to these imbalanced data leads to poor recommendation performance due to excessive learning of biased classes. Traditional oversampling techniques to address this problem are likely to cause overfitting because they repeat the same data, which acts as noise in learning, reducing recommendation performance. In addition, pre-processing methods for most existing data imbalance problems are designed and used for binary classes. Binary class imbalance techniques are difficult to apply to multi-class problems because they cannot model multi-class problems, such as objects at cross-class boundaries or objects overlapping multiple classes. To solve this problem, research has been conducted to convert and apply multi-class problems to binary class problems. However, simplification of multi-class problems can cause potential classification errors when combined with the results of classifiers learned from other sub-problems, resulting in loss of important information about relationships beyond the selected items. Therefore, it is necessary to develop more effective methods to address multi-class imbalance problems. We propose a collaborative filtering model using CGAN to generate realistic virtual data to populate the empty user-item matrix. Conditional vector y identify distributions for minority classes and generate data reflecting their characteristics. Collaborative filtering then maximizes the performance of the recommendation system via hyperparameter tuning. This process should improve the accuracy of the model by addressing the sparsity problem of collaborative filtering implementations while mitigating data imbalances arising from real data. Our model has superior recommendation performance over existing oversampling techniques and existing real-world data with data sparsity. SMOTE, Borderline SMOTE, SVM-SMOTE, ADASYN, and GAN were used as comparative models and we demonstrate the highest prediction accuracy on the RMSE and MAE evaluation scales. Through this study, oversampling based on deep learning will be able to further refine the performance of recommendation systems using actual data and be used to build business recommendation systems.