• Title/Summary/Keyword: Virtual robot

Search Result 363, Processing Time 0.026 seconds

Game Platform and System that Synchronize Actual Humanoid Robot with Virtual 3D Character Robot (가상의 3D와 실제 로봇이 동기화하는 시스템 및 플랫폼)

  • Park, Chang-Hyun;Lee, Chang-Jo
    • Journal of Korea Entertainment Industry Association
    • /
    • v.8 no.2
    • /
    • pp.283-297
    • /
    • 2014
  • The future of human life is expected to be innovative by increasing social, economic, political and personal, including all areas of life across the multi-disciplinary skills. Particularly, in the field of robotics and next-generation games with robots, by multidisciplinary contributions and interaction, convergence between technology is expected to accelerate more and more. The purpose of this study is that by new interface model beyond the technical limitations of the "human-robot interface technology," until now and time and spatial constraints and through fusion of various modalities which existing human-robot interface technologies can't have, the research of more reliable and easy free "human-robot interface technology". This is the research of robot game system which develop and utilizing real time synchronization engine linking between biped humanoid robot and the behavior of the position value of mobile device screen's 3D content (contents), robot (virtual robots), the wireless protocol for sending and receiving (Protocol) mutual information and development of a teaching program of "Direct Teaching & Play" by the study for effective teaching.

Real-time obstacle avoidance for mobile robot (이동 로봇을 위한 실시간 충돌 회피)

  • 범희락;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.658-662
    • /
    • 1991
  • In this paper, a real-time obstacle avoidance for mobile robot based on the readings of the ultrasonic sensors is presented. The twenty eight ultrasonic sensors are arranged in ring and controlled by microprocessor. The readings of the ultrasonic sensor is converted into the virtual forces called repulsive forces, which are the elastic and damping forces. Then, the direction and speed of mobile robot in the cluttered environment are determined by the virtual forces. The effectiveness of the proposed method is verified from a series of simulation studies.

  • PDF

The Virtual Robot Arm Control Method by EMG Pattern Recognition using the Hybrid Neural Network System (혼합형 신경회로망을 이용한 근전도 패턴 분류에 의한 가상 로봇팔 제어 방식)

  • Jung, Kyung-Kwon;Kim, Joo-Woong;Eom, Ki-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1779-1785
    • /
    • 2006
  • This paper presents a method of virtual robot arm control by EMG pattern recognition using the proposed hybrid system. The proposed hybrid system is composed of the LVQ and the SOFM, and the SOFM is used for the preprocessing of the LVQ. The SOFM converts the high dimensional EMG signals to 2-dimensional data. The EMG measurement system uses three surface electrodes to acquire the EMG signal from operator. Six hand gestures can be classified sufficiently by the proposed hybrid system. Experimental results are presented that show the effectiveness of the virtual robot arm control by the proposed hybrid system based classifier for the recognition of hand gestures from EMG signal patterns.

A Virtual Robot Arm Control by EMG Pattern Recognition of Fuzzy-SOFM Method (가상 로봇 팔 제어를 위한 퍼지-SOFM 방식의 근전도 패턴인식)

  • 이정훈;정경권;이현관;엄기환
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • We proposed a method of a virtual robot arm controlled by the EMG pattern recognition using an improved SOFM method. The proposed method is simple in that the EMG signals are used as SOFM's input directly without preprocessing but nevertheless input patterns are reliably classified and then used for fuzzy logic systems to automatically tune the neighborhood and the learning rate. In order to verify the effectiveness of the proposed method, we experimented on EMG pattern recognition of 6 movements from the shoulder, wrist, and elbow. Experimental results show that the proposed SOFM method has 21.7% higher recognition rate than the general SOFM method, the average number of learning iterations has been decreased, and then the virtual robot arm is controlled by EMG pattern recognition.

Development of a magnetic caterpillar based robot for autonomous scanning in the weldment (용접부 자동 탐상을 위한 이동 로봇의 개발)

  • 장준우;정경민;김호철;이정기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.713-716
    • /
    • 2000
  • In this study, we present a mobile robot for ultrasonic scanning of weldment. magnetic Caterpillar mechanism is selected in order to travel on the inclined surface and vertical wall. A motion control board and motor driver are developed to control four DC-servo motors. A virtual device driver is also developed for the purpose of communicating between the control board and a host PC with Dual 'port ram. To provide the mobile robot with stable and accurate movement, PID control algorithm is applied to the mobile robot control. And a vision system for detecting the weld-line are developed with laser slit beam as a light source. In the experiments, movement of the mobile robot is tested inclined on a surface and a vertical wall.

  • PDF

Effects of Robot Assisted Gait Training Combined Virtual Reality on Balance and Respiratory Function in Chronic Stroke Patients (가상현실을 접목한 로봇보행훈련이 만성 뇌졸중 환자의 균형과 호흡기능에 미치는 영향)

  • Wook Hwang
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.2
    • /
    • pp.221-230
    • /
    • 2023
  • Purpose : This study was performed to evaluate the effects of virtual reality combined robot assist gait training (VRG) on improvement of balance and respiratory function in chronic stroke patients. Methods : A single-blind, randomized controlled trial (RCT) was conducted with 35 chronic stroke patients. They were randomly allocated 2 groups; VRG group (n=18) and conservative treatment group (CG; n=17). The VRG group received 30 minutes robot assisted gait training combined virtual reality training, robot assisted gait training was conducted in parallel using a virtual reality device (2 sessions of 15 minutes in a 3D-recorded walking environment and 15 minutes in a downtown walking environment). In the conservative treatment group, neurodevelopmental therapy and exercise therapy were performed according to the function of stroke patients. Each group performed 30 minutes a day 3 times a week for 8 weeks. The primary outcome balance and respiratory function were measured by a balance measurement system (BioRescue, Marseille, France), Berg balance scale, functional reach test for balance, Spirometry (Cosmed Micro Quark, Cosmed, Italy) for respiratory function Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and maximum expiratory volume (PEF) were measured according to the protocol. The measurement were performed before and after the 8 weeks intervention period. Results : Both groups demonstrated significant improvement of outcome in balance and respiratory function during intervention period. VRG revealed significant differences in balance and respiratory function as compared to the CG groups (p<.05). Our results showed that VRG was more effective on balance and respiratory function in patients with chronic stroke. Conclusion : Our findings indicate that VRG can improve balance and respiratory function, highlight the benefits of VRG. This study will be able to be used as an intervention data for recovering balance and respiratory function in chronic stroke patients.

Development of an Internet-based Robot Education System

  • Hong, Soon-Hyuk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.616-621
    • /
    • 2003
  • Until now, many networked robots have been connected to the Internet for the various applications. With these networked robots, very long distance teleoperation can be possible through the Internet. However, the promising area of the Internet-based teleoperation may be distance learning, because of several reasons such as the unpredictable characteristics of the Internet. In robotics class, students learn many theories about robots, but it is hard to perform the actual experiments for all students due to the rack of the real robots and safety problems. Some classes may introduce the virtual robot simulator for students to program the virtual robot and upload their program to operate the real robot through the off-line programming method. However, the students may also visit the laboratory when they want to use the real robot for testing their program. In this paper, we developed an Internet-based robot education system. The developed system was composed of two parts, the robotics class materials and the web-based Java3d robot simulator. That is, this system can provide two services for distance learning to the students through the Internet. The robotics class materials can be provided to the student as the multimedia contents on the web page. As well, the web-based robot simulator as the real experiment tool can help the students get good understanding about certain subject. So, the students can learn the required robotics theories and perform the real experiments from their web browser when they want to study themselves at any time.

  • PDF

Design of a Hybrid Serial-Parallel Robot for Multi-Tasking Machining Processes (ICCAS 2005)

  • Kyung, Jin-Ho;Han, Hyung-Suk;Ha, Young-Ho;Chung, Gwang-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.621-625
    • /
    • 2005
  • This paper presents a new hybrid serial-parallel robot(HSPR), which has six degrees of freedom driven by ball screw linear actuators and motored joints. This hybrid robot design presents a compromise between high rigidity of fully parallel manipulators and extended workspace of serial manipulators. The hybrid robot has a large, singularity-free workspace and high stiffness. Therefore, the presented kinematic structure of the hybrid robot is particularly suitable for multi-tasking machining processes such as milling, drilling, deburring and grinding. In addition to the machining processes, the hybrid robot can be used for welding, fixturing, material handling and so on. The study on design of the hybrid robot is performed. A kinematic analysis and mechanism description of the hybrid robot with six-controlled degree of freedom is presented. In the virtual design works by DADS, workspace and force analysis are discussed. A numerical model is treated to demonstrate our analysis and to determine the range of permissible extension of the struts. Also, we determine some important design parameters for the hybrid robot.

  • PDF

Analysis of User's Eye Gaze Distribution while Interacting with a Robotic Character (로봇 캐릭터와의 상호작용에서 사용자의 시선 배분 분석)

  • Jang, Seyun;Cho, Hye-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.74-79
    • /
    • 2019
  • In this paper, we develop a virtual experimental environment to investigate users' eye gaze in human-robot social interaction, and verify it's potential for further studies. The system consists of a 3D robot character capable of hosting simple interactions with a user, and a gaze processing module recording which body part of the robot character, such as eyes, mouth or arms, the user is looking at, regardless of whether the robot is stationary or moving. To verify that the results acquired on this virtual environment are aligned with those of physically existing robots, we performed robot-guided quiz sessions with 120 participants and compared the participants' gaze patterns with those in previous works. The results included the followings. First, when interacting with the robot character, the user's gaze pattern showed similar statistics as the conversations between humans. Second, an animated mouth of the robot character received longer attention compared to the stationary one. Third, nonverbal interactions such as leakage cues were also effective in the interaction with the robot character, and the correct answer ratios of the cued groups were higher. Finally, gender differences in the users' gaze were observed, especially in the frequency of the mutual gaze.

Systemic Development of Tele-Robotic Interface for the Hot-Line Maintenance (활선 작업을 위한 원격 조종 인터페이스 개발)

  • Kim Min-Soeng;Lee Ju-Jang;Kim Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1217-1222
    • /
    • 2004
  • This paper describes the development of tele-robotic interface for the hot-line maintenance robot system. One of main issues in designing human-robot interface for the hot-line maintenance robot system is to plan the control procedure for each part of the robotic system. Another issue is that the actual degree of freedom (DOF) in the hot-line maintenance robot system is much greater than that of available control devices such as joysticks and gloves in the remote-cabin. For this purpose, a virtual simulator, which includes the virtual hot-line maintenance robot system and the environment, is developed in the 3D environment using CAD data. It is assumed that the control operation is done in the remote cabin and the overall work process is observed using the main-camera with 2 DOFs. For the input device, two joysticks, one pedal, two data gloves, and a Head Mounted Display (HMD) with tracker sensor were used. The interface is developed for each control mode. Designed human-interface system is operated using high-level control commands which are intuitive and easy to understand without any special training.