• Title/Summary/Keyword: Virtual inertia control

Search Result 17, Processing Time 0.019 seconds

Tension Based 7 DOEs Force Feedback Device: SPIDAR-G

  • Kim, Seahak;Yasuharu Koike;Makoto Sato
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • In this paper, we intend to demonstrate a new intuitive force-feedback device for advanced VR applications. Force feed-back for the device is tension based and is characterized by 7 degrees of freedom (DOF); 3 DOF for translation, 3 DOF for rotation, and 1 DOF for grasp). The SPIDAR-G (Space Interface Device for Artificial Reality with Grip) will allow users to interact with virtual objects naturally by manipulating two hemispherical grips located in the center of the device frame. We will show how to connect the strings between each vertex of grip and each extremity of the frame in order to achieve force feedback. In addition, methodologies will be discussed for calculating translation, orientation and grasp using the length of 8 strings connected to the motors and encoders on the frame. The SPIDAR-G exhibits smooth force feedback, minimized inertia, no backlash, scalability and safety. Such features are attributed to strategic string arrangement and control that results in stable haptic rendering. The design and control of the SPIDAR-G will be described in detail and the Space Graphic User Interface system based on the proposed SPIDAR-G system will be demonstrated. Experimental results validate the feasibility of the proposed device and reveal its application to virtual reality.

Comparison of Dynamic Characteristics between Virtual Synchronous Machines Adopting Different Active Power Droop Controls

  • Yuan, Chang;Liu, Chang;Zhang, Xueyin;Zhao, Tianyang;Xiao, Xiangning;Tang, Niang
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.766-776
    • /
    • 2017
  • In modern power systems, high penetration of distributed generators (DGs) results in high stress on system stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method named virtual synchronous machine (VSM) was proposed, which brought new characteristics to inverters such as synchronous machines (SMs). In addition, different active power droop controls for VSMs are being proposed in literatures. However, they are quite different in terms of their dynamic characteristics despite of the similar control laws. In this paper, mathematical models of a VSM adopting different active power droop controls are built and analyzed. The dynamic performance of the VSM output active power and virtual rotor angular frequency are presented for different models. The influences of the damping factor and droop coefficient on the VSM dynamic behaviors are also investigated in detail. Finally, the theoretical analysis is verified by simulations and experimental results.

Virtual Inertial Control of a Wind Power Plant using the Maximum Rate of Change of Frequency (주파수의 최대 변화율을 이용한 풍력단지 가상관성제어)

  • Kim, Dooyeon;Kim, Jinho;Lee, Jinshik;Kim, Yeon-Hee;Chun, Yeong-Han;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.918-924
    • /
    • 2013
  • In a conventional power system, the frequency is recovered to the nominal value by the inertial, primary, and secondary responses of the synchronous generators (SGs) after a large disturbance such as a generator tripping. For a power system with high wind penetration, the system inertia is significantly reduced due to the maximum power point tracking control based operation of the variable speed wind generators (WGs). This paper proposes a virtual inertial control for a wind power plant (WPP) based on the maximum rate of change of frequency to release more kinetic energy stored in the WGs. The performance of the proposed algorithm is investigated in a model system, which consists of a doubly fed induction generator-based WPP and SGs using an EMTP-RV simulator. The results indicate that the proposed algorithm can improve the frequency nadir after a generator tripping. In addition, the algorithm can lead the instant of a frequency rebound and help frequency recovery after the frequency rebound.

EFFECT OF THE FLEXIBILITY OF AUTOMOTIVE SUSPENSION COMPONENTS IN MULTIBODY DYNAMICS SIMULATIONS

  • Lim, J.Y.;Kang, W.J.;Kim, D.S.;Kim, G.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.745-752
    • /
    • 2007
  • In this study, the effects of flexible bodies in vehicle suspension components were investigated to enhance the accuracy of multibody dynamic simulation results. Front and rear suspension components were investigated. Subframes, a stabilizer bar, a tie rod, a front lower control arm, a front knuckle, and front struts were selected. Reverse engineering techniques were used to construct a virtual vehicle model. Hard points and inertia data of the components were measured with surface scanning equipment. The mechanical characteristics of bushings and dampers were obtained from experiments. Reaction forces calculated from the multibody dynamics simulations were compared with test results at the ball joint of the lower control arm in both time-history and range-pair counting plots. Simulation results showed that the flexibility of the strut component had considerable influence on the lateral reaction force. Among the suspension components, the flexibility of the sub-frame, steering knuckle and upper strut resulted in better correlations with test results while the other flexible bodies could be neglected.

Derivation and Validation of Aerodynamic Parameters of Small Airplanes Using Design Software and Subjective Tests (설계용 S/W를 활용한 소형비행기의 비행특성 매개변수 추출과 주관적 시험평가방식에 관한 연구)

  • 이숙경;공지영;최유환;윤석준
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.142-147
    • /
    • 2004
  • It is very difficult to acquire high-fidelity flight test data for small airplanes such as typical unmanned aerial vehicles because MEMS-type small sensors used in the tests do not present reliable data in general. Besides, it is not practical to conduct expensive flight tests for low-cost small airplanes in order to simulate their flight characteristics. A practical approach to obtain acceptable flight data, including stability and control derivatives and data of weight and balance, is proposed in this study. Aircraft design software such as Darcorp's AAA is used to generate aerodynamic data for small airplanes, and moments of inertia are calculated using CATIA, structural design software. These flight data from simulation software are evaluated subjectively and tailored using simulation flight by experienced pilots, based on the certified procedures in FAA AC 120-45A and 40B, which are used for manned airplane simulators.

  • PDF

A Novel Three-Phase Four-Wire Grid-Connected Synchronverter that Mimics Synchronous Generators

  • Tan, Qian;Lv, Zhipeng;Xu, Bei;Jiang, Wenqian;Ai, Xin;Zhong, Qingchang
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2221-2230
    • /
    • 2016
  • Voltage and frequency stability issues occur in existing centralized power system due to the high penetration of renewable energy sources, which decrease grid absorptive capacity of them. The grid-connected inverter that mimics synchronous generator characteristics with inertia characteristic is beneficial to electric power system stability. This paper proposed a novel three-phase four-wire grid-connected inverter with an independent neutral line module that mimics synchronous generators. A mathematical model of the synchronous generator and operation principles of the synchronverter are introduced. The main circuit and control parameters design procedures are also provided in detail. A 10 kW prototype is built and tested for further verification. The primary frequency modulation and primary voltage regulation characteristics of the synchronous generator are emulated and automatically adjusted by the proposed circuit, which helps to supports the grid.

Power Decoupling Control Method of Grid-Forming Converter: Review

  • Hyeong-Seok Lee;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.221-229
    • /
    • 2023
  • Recently, Grid-forming(GFM) converter, which offers features such as virtual inertia, damping, black start capability, and islanded mode operation in power systems, has gained significant attention. However, in low-voltage microgrids(MG), it faces challenges due to the coupling phenomenon between active and reactive power caused by the low line impedance X/R ratio and a non-negligible power angle. This power coupling issue leads to stability and performance degradation, inaccurate power sharing, and control parameter design problems for GFM converters. Therefore, this paper serves as a review study on not only control methods associated with GFM converters but also power decoupling techniques. The aim is to introduce promising control methods and enhance accessibility to future research activities by providing a critical review of power decoupling methods. Consequently, by facilitating easy access for future researchers to the study of power decoupling methods, this work is expected to contribute to the expansion of distributed power generation.