• 제목/요약/키워드: Virtual inertia

Search Result 55, Processing Time 0.03 seconds

A Study on Force-Reflecting Interface using Ultrasonic Motros (초음파모터를 이용한 역감장치에 관한 연구)

  • 강원찬;김대현;김영동
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.123-128
    • /
    • 1998
  • This paper describes the evaluation of a force-reflecting interface with ultrasonic motors(USMs). The force-reflecting interface allows a human to feel object within virtual environment. To effectively display the mechanical impedance of the human hand we need a haptic device with specific characteristics, such as low inertia, almost zero friction and very high stiffness. USMs have attracted considerable attention as the actuator satisfied these conditions. USMs combine features such as high driving torque at low rotational speed, high holding torque and fast response therefore we studied two degree of freedom force-reflecting haptic system.

  • PDF

Implementation of A Spatial 3-DOF Haptic Mechanism (공간형 3 자유도 Haptic 메커니즘의 구현)

  • 이재훈;이수강;이병주;이석희;이정헌;김희국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.312-316
    • /
    • 2004
  • In this study, a spatial 3-dof haptic mechanism is implemented. The implemented mechanism does not employ the gear transmissions as velocity reducers for all three joints but uses wire-based transmissions, thereby it is able to minimize the frictions significantly. Also, by employing the structure of the four-bar mechanism to drive third joint from close to the base, the mechanism is able to minimize the inertia effect from the third actuator very effectively. Its kinematic analysis such as position and velocity analyses are performed first. Then, its operating software development, hardware implementation, and the related interfaces between a PC and the implemented Haptic device are completed. To evaluate its potential and its performance as a haptic device, a experiment generating a virtual constraint in a operational task space is conducted and preliminary results are discussed.

  • PDF

A Force-Reflecting Haptic interface using Ultrasonic Motors (초음파 모터를 이용한 힘 반영 촉각장치)

  • Shin, Duk;Oh, Geum-Kon;Kim, Young-Dong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.111-118
    • /
    • 1999
  • Throughout this thesis, I describe the design, fabrication, and evaluation of the 3 DOF farce-reflecting haptic interface using USMs(ultrasonic motors). This haptic interface allows a htmlaIl "observer" to explore and interact with a virtual environrrent for the sense of touch. To effectively display the mechanical impedance of the htmlaIl hand we need a haptic device with specific characteristics, such as low inertia, alrmst zero friction and very high stiffness. USMs have attracted considerable attention as the actuator satisfied these conditions. An observer may grasp the end effector of revice and interact with surfaces and objects created within a virtual environment The revice provires force feedback, allowing users to "feel" objects within the environment. The device works very well, as users are able to detect the edge of the wall, the stiffness of the button and the puncture. TIle force-reflecting haptic interface could be suitable as a master for micro-surgery or as an interface to virtual reality training systems.

  • PDF

Control Strategy and Stability Analysis of Virtual Synchronous Generators Combined with Photovoltaic Dynamic Characteristics

  • Ding, Xiying;Lan, Tianxiang;Dong, Henan
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1270-1277
    • /
    • 2019
  • A problem with virtual synchronous generator (VSG) systems is that they are difficult to operate stably with photovoltaic (PV) power as the DC side. With this problem in mind, a PV-VSG control strategy considering the dynamic characteristics of the DC side is proposed after an in-depth analysis of the dynamic characteristics of photovoltaic power with a parallel energy-storage capacitor. The proposed PV-VSG automatically introduces DC side voltage control for the VSG when the PV enters into an unstable working interval, which avoids the phenomenon where an inverter fails to work due to a DC voltage sag. The stability of the original VSG and the proposed PV-VSG were compared by a root locus analysis. It is found that the stability of the PV-VSG is more sensitive to the inertia coefficient J than the VSG, and that a serious power oscillation may occur. According to this, a new rotor model is designed to make the inertial coefficient automatically change to adapt to the operating state. Experimental results show that the PV-VSG control strategy can achieve stable operation and maximum power output when the PV output power is insufficient.

Development of Physics Simulation for Augmented Reality Billiards Content (증강현실 당구 콘텐츠를 위한 물리 시뮬레이션 개발)

  • Kim, Hong-Jik;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.150-159
    • /
    • 2022
  • In this paper, we propose a physics simulation for augmented reality (AR) billiards content. The characteristics of the physics simulation for the proposed AR billiards content are as follows. First, physical equations are derived by calculating the force and moment of inertia applied to the billiards ball to realize the motion of the billiards ball similar to the real one in the AR environment. Then, we determine the velocity and angular velocity of the virtual billiards ball associated with the rotation of the virtual billiards ball with respect to the impact point. Second, using some vectors such as incidnet vector, normal vector, reflection vector, the trajectory of the virtual billiards ball would be implement. these equations are applied to AR environment so that AR billiards content could be implement. This physics simulation allows users to feel like the real world using a virtual pool table and induce them to interact with the real environment. As a result of the experiment, the accuracy range between the path of the real billiards ball and the path of the virtual billiards ball was calculated to be 97.75% to 99.11%. Therefore, it was determined that the performance of the physics simulation for the AR billiards content proposed in this paper performs similarly to the path of the real billiards ball.

Gesture Recognition based on Motion Inertial Sensors for Interactive Game Contents (체험형 게임콘텐츠를 위한 움직임 관성센서 기반의 제스처 인식)

  • Jung, Young-Kee;Cha, Byung-Rae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.262-271
    • /
    • 2009
  • The purpose of this study was to propose the method to recognize gestures based on inertia sensor which recognizes the movements of the user using inertia sensor and lets the user enjoy the game by comparing the recognized movements with the pre-defined movements for the game contents production. Additionally, it was tried to provide users with various data entry methods by letting them wear small controllers using three-axis accelerator sensor. Users can proceed the game by moving according to the action list printed on the screen. They can proceed the experiential games according to the accuracy and timing of their movements. If they use multiple small wireless controllers together wearing them on the major parts of hands and feet and utilize the proposed methods, they will be more interested in the game and be absorbed in it.

  • PDF

An Automatic Speed Control System of a Treadmill with Ultrasonic Sensors (초음파 센서를 이용한 트레드밀의 자동속도 제어시스템)

  • Auralius, Manurung;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.505-511
    • /
    • 2011
  • In this paper, we have developed an automatic velocity control system of a small-sized commercial treadmill (belt length of 1.2 m and width of 0.5 m) which is widely used at home and health centers. The control objective is to automatically adjust the treadmill velocity so that the subject's position is maintained within the track when the subject walks at a variable velocity. The subject's position with respect to a reference point is measured by a low-cost sonar sensor located on the back of the subject. Based on an encoder sensor measurement at the treadmill motor, a state feedback control algorithm with Kalman filter was implemented to determine the velocity of the treadmill. In order to reduce the unnatural inertia force felt by the subject, a predefined acceleration limit was applied, which generated smooth velocity trajectories. The experimental results demonstrate the effectiveness of the proposed method in providing successful velocity changes in response to variable velocity walking without causing significant inertia force to the subject. In the pilot study with three subjects, users could change their walking velocity easily and naturally with small deviations during slow, medium, and fast walking. The proposed automatic velocity control algorithm can potentially be applied to any locomotion interface in an economical way without having to use sophisticated and expensive sensors and larger treadmills.

Comparison of Dynamic Characteristics between Virtual Synchronous Machines Adopting Different Active Power Droop Controls

  • Yuan, Chang;Liu, Chang;Zhang, Xueyin;Zhao, Tianyang;Xiao, Xiangning;Tang, Niang
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.766-776
    • /
    • 2017
  • In modern power systems, high penetration of distributed generators (DGs) results in high stress on system stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method named virtual synchronous machine (VSM) was proposed, which brought new characteristics to inverters such as synchronous machines (SMs). In addition, different active power droop controls for VSMs are being proposed in literatures. However, they are quite different in terms of their dynamic characteristics despite of the similar control laws. In this paper, mathematical models of a VSM adopting different active power droop controls are built and analyzed. The dynamic performance of the VSM output active power and virtual rotor angular frequency are presented for different models. The influences of the damping factor and droop coefficient on the VSM dynamic behaviors are also investigated in detail. Finally, the theoretical analysis is verified by simulations and experimental results.

Tension Based 7 DOEs Force Feedback Device: SPIDAR-G

  • Kim, Seahak;Yasuharu Koike;Makoto Sato
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • In this paper, we intend to demonstrate a new intuitive force-feedback device for advanced VR applications. Force feed-back for the device is tension based and is characterized by 7 degrees of freedom (DOF); 3 DOF for translation, 3 DOF for rotation, and 1 DOF for grasp). The SPIDAR-G (Space Interface Device for Artificial Reality with Grip) will allow users to interact with virtual objects naturally by manipulating two hemispherical grips located in the center of the device frame. We will show how to connect the strings between each vertex of grip and each extremity of the frame in order to achieve force feedback. In addition, methodologies will be discussed for calculating translation, orientation and grasp using the length of 8 strings connected to the motors and encoders on the frame. The SPIDAR-G exhibits smooth force feedback, minimized inertia, no backlash, scalability and safety. Such features are attributed to strategic string arrangement and control that results in stable haptic rendering. The design and control of the SPIDAR-G will be described in detail and the Space Graphic User Interface system based on the proposed SPIDAR-G system will be demonstrated. Experimental results validate the feasibility of the proposed device and reveal its application to virtual reality.

EFFECT OF THE FLEXIBILITY OF AUTOMOTIVE SUSPENSION COMPONENTS IN MULTIBODY DYNAMICS SIMULATIONS

  • Lim, J.Y.;Kang, W.J.;Kim, D.S.;Kim, G.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.745-752
    • /
    • 2007
  • In this study, the effects of flexible bodies in vehicle suspension components were investigated to enhance the accuracy of multibody dynamic simulation results. Front and rear suspension components were investigated. Subframes, a stabilizer bar, a tie rod, a front lower control arm, a front knuckle, and front struts were selected. Reverse engineering techniques were used to construct a virtual vehicle model. Hard points and inertia data of the components were measured with surface scanning equipment. The mechanical characteristics of bushings and dampers were obtained from experiments. Reaction forces calculated from the multibody dynamics simulations were compared with test results at the ball joint of the lower control arm in both time-history and range-pair counting plots. Simulation results showed that the flexibility of the strut component had considerable influence on the lateral reaction force. Among the suspension components, the flexibility of the sub-frame, steering knuckle and upper strut resulted in better correlations with test results while the other flexible bodies could be neglected.