• Title/Summary/Keyword: Virtual control point

Search Result 132, Processing Time 0.03 seconds

Stable Haptic Display Based on Coupling Impedance for Internal and External Forces

  • Kawai, Masayuki;Yoshikawa, Tsuneo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.2-8
    • /
    • 2002
  • This paper discusses haptic display for grasping a virtual object by two fingers. Much research has been done on fundamental analysis for stability of haptic display. But it is difficult to apply the results immediately to grasping situations by two fingers, since the studies usually deal with a single device and a single object and the fingertip force in grasping situations has two components, internal and external components. The conventional methods, which specify the coupling impedance at each contact point separately, have no other alternative but to specify the impedance for the sum of the internal and external components. So even if only the impedance for the external force should be changed, the impedance for the internal force is also changed at the same time. In this paper, a new method, in which the coupling impedance is specified separately for the internal and external forces, is proposed and the stability of the proposed method is discussed using passivity analysis for 1 -DOF(Degree-Of-Freedom) system. Finally, some experiments are performed to study the effects of the proposed method.

Bio-inspired robot swarm control algorithm for dynamic environment monitoring

  • Kim, Kyukwang;Kim, Hyeongkeun;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • To monitor the environment and determine the source of a pollutant gradient using a multiple robot swarm, we propose a hybrid algorithm that combines two bio-inspired algorithms mimicking chemotaxis and pheromones of bacteria. The algorithm is implemented in virtual robot agents in a simulator to evaluate their feasibility and efficiency in gradient maps with different sizes. Simulation results show that the chemotaxis controller guided robot agents to the locations with higher pollutant concentrations, while the pheromone marked in a virtual field increased the efficiency of the search by reducing the visiting redundancy. The number of steps required to reach the target point did not increase proportionally as the map size increased, but were less than those in the linear whole-map search method. Furthermore, the robot agents could function with simple sensor composition, minimum information about the map, and low calculation capacity.

Formation Algorithm with Local Minimum Escape for Unicycle Robots (유니사이클 로봇을 위한 지역최소점 탈출을 갖춘 포메이션 알고리즘)

  • Jung, Hahmin;Kim, Dong Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.349-356
    • /
    • 2013
  • This paper presents formation control based on potential functions for unicycle robots. The unicycle robots move to formation position which is made from a reference point and neighboring robots. In the framework, a local minimum case occurred by combination of potential repulsed from neighboring robots and potential attracted from a formation line is presented, in which the robot escapes from a local minimum using a virtual escape point after recognizing trapped situation. As well, in the paper, potential functions are designed to keep the same distance between neighboring robots on a formation line, i.e. the relative distance between neighboring robots on a formation line is controlled by a potential function parameter. The simulation results show that the proposed approach can effectively construct straight line, V, and polygon formation for multiple robots.

A Research of MPPT Control Algorithm using Hardware-In-the-Loop System (Hardware-In-the-Loop 시스템을 이용한 MPPT 제어 알고리즘 연구)

  • Kim, Byeong-Man;Lee, Dong-Gi;Jung, Young-Seok;Yu, Gwon-Jong;Choi, Ju-Yeop;Choy, Ick
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.257-260
    • /
    • 2005
  • A very complicated real system can be simulated using hardware-in-the-loop (HIL) system in a virtual environment. Therefore, HIL system can speed up research and development process with a little effort. Also, current DSP for utility interactive photovoltaic generation system adopts floating point process type, which is easy to use for number crunching. However, fixed point process DSP, TMS320F2812, has high control speed and is rather inexpensive. This paper presents more efficient method for MPPT control using TMS320F2812 along with HIL system.

  • PDF

Transient Characteristics and Physical Constraints of Grid-Tied Virtual Synchronous Machines

  • Yuan, Chang;Liu, Chang;Yang, Dan;Zhou, Ruibing;Tang, Niang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1111-1126
    • /
    • 2018
  • In modern power systems, distributed generators (DGs) result in high stress on system frequency stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method referred to as a virtual synchronous machine (VSM) has been proposed, which brought new characteristics to inverters such as synchronous machines (SM). DGs employing an energy storage system (ESS) provide inertia and damping through VSM control. Meanwhile, energy storage presents some physical constraints in the VSM implementation level. In this paper, a VSM mathematical model is built and analyzed. The dynamic responses of the output active power are presented when a step change in the frequency occurs. The influences of the inertia constant, damping factor and operating point on the ESS volume margins are investigated. In addition, physical constraints are proposed based on these analyses. The proposed physical constraints are simulated using PSCAD/EMTDC software and tested through RTDS experiment. Both simulation and RTDS test results verify the analysis.

Resonance Investigation and Active Damping Method for VSC-HVDC Transmission Systems under Unbalanced Faults

  • Tang, Xin;Zhan, Ruoshui;Xi, Yanhui;Xu, Xianyong
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1467-1476
    • /
    • 2019
  • Grid unbalanced faults can cause core saturation of power transformer and produce lower-order harmonics. These issues increase the electrical stress of power electronic devices and can cause a tripping of an entire HVDC system. In this paper, based on the positive-sequence and negative-sequence impedance model of a VSC-HVDC system as seen from the point of common connection (PCC), the resonance problem is analyzed and the factors determining the resonant frequency are obtained. Furthermore, to suppress over-voltage and over-current during resonance, a novel method using a virtual harmonic resistor is proposed. The virtual harmonic resistor emulates the role of a resistor connected in series with the commutating inductor without influencing the active and reactive power control. Simulation results in PSCAD/EMTDC show that the proposed control strategy can suppress resonant over-voltage and over-current. In addition, it can be seen that the proposed strategy improves the safety of the VSC-HVDC system under unbalanced faults.

Flight Trajectory Simulation via Reinforcement Learning in Virtual Environment (가상 환경에서의 강화학습을 이용한 비행궤적 시뮬레이션)

  • Lee, Jae-Hoon;Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • The most common way to control a target point using artificial intelligence is through reinforcement learning. However, it had to process complicated calculations that were difficult to implement in order to process reinforcement learning. In this paper, the enhanced Proximal Policy Optimization (PPO) algorithm was used to simulate finding the planned flight trajectory to reach the target point in the virtual environment. In this paper, we simulated how this problem was used to find the planned flight trajectory to reach the target point in the virtual environment using the enhanced Proximal Policy Optimization(PPO) algorithm. In addition, variables such as changes in trajectory, effects of rewards, and external winds are added to determine the zero conditions of external environmental factors on flight trajectory learning, and the effects on trajectory learning performance and learning speed are compared. From this result, the simulation results have shown that the agent can find the optimal trajectory in spite of changes in the various external environments, which will be applicable to the actual vehicle.

A Way-Point Tracking of Hovering AUV by PID control (PID 제어기를 이용한 호버링 AUV의 경유점 추적)

  • Kim, Min J.;Bae, Seol B.;Baek, Woon-Kyung;Joo, Moon G.;Ha, Kyoung Nam
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.257-264
    • /
    • 2015
  • For the tracking of the way-points of hovering AUV (HAUV), we suggest a simple PID controller. The way-points are designed to approach to a virtual underwater structure and the heading angles at each way-point are set to look at the structure in the face. The proposed controller consists of a vertical controller to maintain the depth and pitch angle, and a horizontal controller to move to the desired position as well as to adjust the heading angle of the HAUV. In the simulation using Matlab/Simulink, the HAUV with the proposed PID controller is shown to track all the way-points within 1 m range while maintaining proper heading angle at each way-point.

Communication Method for Torque Control of Commercial Diesel Engine in Range-Extended Electric Trash Truck (주행거리 연장형 청소용 전기자동차에 장착된 상용 디젤엔진의 토크제어를 위한 통신 방안)

  • Park, Young-Kug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.1-8
    • /
    • 2018
  • This paper describes new communication methods for transmitting torque commands between the vehicle controller that determines the amount of power generation in a range-extended electric vehicle and the engine controller that performs it. Generally, vehicles use CAN communication, but in this case, the hardware and software of the existing engine controller must be modified. For this reason, it is not easy to apply CAN communication to small and medium sized automotive reorganize companies. Therefore, this research presents a pin-pin communication method for applying the existing mass produced engine controller to range-extended electric vehicles. The pin-pin communication method converts the driver's demand torque control map inside an mass produced engine controller into a virtual accelerator opening position according to the target speed and target torque of the engine, and converts this to a voltage signal for the existing mass produced engine controller to recognize it. The virtual accelerator opening positions are mounted in the form of a control map in the vehicle controller through the reverse conversion process in an offline environment and are determined by the engine generating power requirements and engine optimal operating point algorithm. These algorithms and signal conversion circuits for engine torque transmission have been mounted on the vehicle controller to conduct the virtual accelerator opening position conversion process according to the engine target torque and to establish the virtual accelerator voltage signal using the signal converter.

Rotor Speed-based Droop of a Wind Generator in a Wind Power Plant for the Virtual Inertial Control

  • Lee, Jinsik;Kim, Jinho;Kim, Yeon-Hee;Chun, Yeong-Han;Lee, Sang Ho;Seok, Jul-Ki;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1021-1028
    • /
    • 2013
  • The frequency of a power system should be kept within limits to produce high-quality electricity. For a power system with a high penetration of wind generators (WGs), difficulties might arise in maintaining the frequency, because modern variable speed WGs operate based on the maximum power point tracking control scheme. On the other hand, the wind speed that arrives at a downstream WG is decreased after having passed one WG due to the wake effect. The rotor speed of each WG may be different from others. This paper proposes an algorithm for assigning the droop of each WG in a wind power plant (WPP) based on the rotor speed for the virtual inertial control considering the wake effect. It assumes that each WG in the WPP has two auxiliary loops for the virtual inertial control, i.e. the frequency deviation loop and the rate of change of frequency (ROCOF) loop. To release more kinetic energy, the proposed algorithm assigns the droop of each WG, which is the gain of the frequency deviation loop, depending on the rotor speed of each WG, while the gains for the ROCOF loop of all WGs are set to be equal. The performance of the algorithm is investigated for a model system with five synchronous generators and a WPP, which consists of 15 doubly-fed induction generators, by varying the wind direction as well as the wind speed. The results clearly indicate that the algorithm successfully reduces the frequency nadir as a WG with high wind speed releases more kinetic energy for the virtual inertial control. The algorithm might help maximize the contribution of the WPP to the frequency support.