• Title/Summary/Keyword: Virtual Underwater

Search Result 56, Processing Time 0.025 seconds

A Study On The Development Of Virtual Underwater Environment And Sensory Simulator (가상 수중 환경과 체감형 시뮬레이터 개발에 관한 연구)

  • Youn, Jae-Hong;Hur, Gi-Taek;Kang, Im-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.560-568
    • /
    • 2012
  • As for the implementation technology of virtual space, the experience method becomes multifunctional and it recognizes movement, sound, temperature and pressure and is expanding to the studies on the interaction possible intelligent interaction technology field between contents and users. The virtual reality technology is being studied to apply the 3D graphic technology and physical phenomena to virtual space to increase the sense of reality and use hardware devices to the virtual environment to increase immersive experience. The production of interactive contents about the virtual underwater environment needs bidirectional interface technology to connect hardware devices and ocean contents in order to increase the sense of a user to increase the sense of immersion. In this study, it tried to express the virtual underwater environment with the sense of actuality and reality from the analysis of the environmental factors according to changes in depth of water and from the application of the normalized underwater physical laws. Also it was to develop sensory contents having to experience the skin scuba without directly entering the water by connecting a sensory simulator about the skin scuba with the virtual underwater environment.

Development and Assessment of Multi-sensory Effector System to Improve the Realistic of Virtual Underwater Simulation (가상 해저 시뮬레이션의 현실감 향상을 위한 다감각 효과 재현 시스템 개발 및 평가)

  • Kim, Cheol-Min;Youn, Jae-Hong;Kang, Im-Chul;Kim, Byung-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.104-112
    • /
    • 2014
  • With recent development of virtual reality technology, coupled with the growth of the marine industry, virtual underwater simulation systems are under development in various studies, for educational purposes and to simulate virtual reality experiences. Current literature indicates many underwater simulation systems to date have focused on the quality of visual stimulus delivered through three-dimensional graphics user interface, limiting the reality of the experience. In order to improve the quality of the reality delivered by such virtual simulations, it is crucial to develop multi-sensory technology rather than focus on the conventional audio-visual interaction, which limits experiencer from the sense of underwater immersion and existence within the simulation. This work proposes the immersive multi-sensory effector system, delivering the users with a more realistic underwater experience. The sense of reality perceived was evaluated, as the main factor of the virtual reality system.

Autonomous Navigation of an Underwater Robot in the Presence of Multiple Moving Obstacles

  • Kwon, Kyoung-Youb;Joh, Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.124-130
    • /
    • 2005
  • Obstacle avoidance of underwater robots based on a modified virtual force field algorithm is proposed in this paper. The VFF(Virtual Force Field) algorithm, which is widely used in the field of mobile robots, is modified for application to the obstacle avoidance of underwater robots. This Modified Virtual Force Field(MVFF) algorithm using the fuzzy lgoc can be used in moving obstacles avoidance. A fuzzy algorithm is devised to handle various situations which can be faced during autonomous navigation of underwater robots. The proposed obstacle avoidance algorithm has ability to handle multiple moving obstacles. Results of simulation show that the proposed algorithm can be efficiently applied to obstacle avoidance of the underwater robots.

A New Path Control Algorithm for Underwater Robots Using Fuzzy Logic (퍼지 로직을 이용한 수중 로봇의 새로운 경로 제어 알고리즘)

  • Kwon, Kyoung-Youb;Joung, Tae-Whee;Jo, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.498-504
    • /
    • 2005
  • A fuzzy logic for collision avoidance of underwater robots is proposed in this paper. The VFF(Virtual Force Field) method, which is widely used in the field of mobile robots, is modified for application to the autonomous navigation of underwater robots. This Modified Virtual Force Field(MVFF) method using the fuzzy logic can be used in either track keeping or obstacle avoidance. Fuzzy logics are devised to handle various situations which can be faced during autonomous navigation of underwater robots. The obstacle avoidance algorithm has the ability to handle multiple static obstacles. Results of simulation show that the proposed method can be efficiently applied to obstacle avoidance of the underwater robots.

Fish Schooling Animation System for Constructing Contents of Cyber Aquarium

  • Kim, Jong-Chan;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.3
    • /
    • pp.157-162
    • /
    • 2007
  • The goal of researching a proper crowd animation is to design system that is satisfied with the reality of scenes, performance of system, and interaction with users to show the crowd vividly and effectively in virtual underwater world. In this paper, we smartly expressed the behavior patterns for flocks of fish in virtual underwater and we made up for the weak points in spending time and cost to produce crowd animation. We compared with the number of mesh, the number of fish, the number of frame, elapsed time, and resolution and analyzes them with the fish behavior simulating system. We developed a virtual underwater simulator using this system.

  • PDF

A Virtual Address Mapping Method for Interconnection between Terrestrial Communication Network and Underwater Acoustic Communication Network (지상 통신 네트워크와 수중음파 통신 네트워크의 상호연결을 위한 가상 주소 매핑 방법)

  • Kim, Changhwa
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.27-45
    • /
    • 2018
  • The terrestrial communication network and the underwater acoustic communication network have very different communication characteristics each other in operational environments, communication media, propagation delay, frequency bandwidth, transmission speed, bit error rate, and so on. These different characteristics cause some different address schemes and different maximum transmission units and, as a result, these differences must form certainly obstacles to the intercommunication between a terrestrial communication network and an underwater acoustic communication network. In this paper, we presents a method to use the virtual addresses to resolve the interconnection problem caused by different address schemes between a terrestrial communication network and an underwater acoustic communication network, and, through a mathematical modeling, we analyze the performance on the message transceiving delay time in the underwater environment.

A method for measuring tonal noise of underwater vehicle using virtual synthetic array in near-field (근접장에서 가상 합성 배열을 이용한 수중 이동체의 토널 소음 측정 방법)

  • Kang, Tae-Woong;Lee, Guen-Hyeok;Kim, Ki-Man;Han, Min-Su;Choi, Jae-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.443-450
    • /
    • 2018
  • A receiving array system can be applied for tonal noise analysis of underwater vehicles, but it is difficult to install and operate, and a lot of cost is required. In order to overcome this problem, this paper proposes a method to measure the tonal noise of underwater vehicle after synthesizing a virtual array using single receiver. The proposed method compensates the Doppler frequency and time delay caused by the movement of the underwater sound source and applies the focused beamforming technique. The performance of the proposed method was analyzed via simulation.

Multiuser chirp modulation for underwater acoustic channel based on VTRM

  • Yuan, Fei;Wei, Qian;Cheng, En
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.256-265
    • /
    • 2017
  • In this paper, an ascheme is proposed for multiuser underwater acoustic communication by using the multi-chirp rate signals. It differs from the well known TDMA (Time Division Multiple Access), FDMA (Frequency Division Multiple Access) or CDMA (Code Division Multiple Access), by assigning each users with different chirp-rate carriers instead of the time, frequency or PN code. Multi-chirp rate signals can be separated from each other by FrFT (Fractional Fourier Transform), which can be regarded as the chirp-based decomposing, and superior to the match filter in the underwater acoustic channel. VTRM (Virtual Time Reverse Mirror) is applied into the system to alleviate the ISI caused by the multipatch and make the equalization more simple. Results of computer simulations and pool experiments prove that the proposed multiuser underwater acoustic communication based on the multi-chirp rate exhibit well performance. Outfield experments carrie out in Xiamen Port show that using about 10 kHz bandwidth, four users could communicate at the same time with 425 bps with low BER and can match the UAC application.

Virtual Goal Method for Homing Trajectory Planning of an Autonomous Underwater Vehicle (가상의 목표점을 이용한 무인 잠수정의 충돌회피 귀환 경로계획)

  • Park, Sung-Kook;Lee, Ji-Hong;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.61-70
    • /
    • 2009
  • An AUV (Autonomous Underwater Vehicle) is an unmanned underwater vessel to investigate sea environments and deep sea resource. To be completely autonomous, AUV must have the ability to home and dock to the launcher. In this paper, we consider a class of homing trajectory planning problem for an AUV with kinematic and tactical constraints in horizontal plane. Since the AUV under consideration has underactuated characteristics, trajectory for this kind of AUV must be designed considering the underactuated characteristics. Otherwise, the AUV cannot follow the trajectory. Proposed homing trajectory panning method that called VGM (Virtual Goal Method) based on visibility graph takes the underactated characteristics into consideration. And it guarantees shortest collision free trajectory. For tracking control, we propose a PD controller by simple guidance law. Finally, we validate the trajectory planning algorithm and tracking controller by numerical simulation and ocean engineering basin experiment in KORDI.

Fabrication and Pulse-echo Response of Level-Meter for Underwater (수중용 레벨메터의 제작 및 펄스-에코 특성)

  • Yang, Y.S.;Kim, C.H.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.935-937
    • /
    • 1999
  • In this study, 1-3 type composite specimens were fabricated with PZT powders prepared by the molten-salt synthesis method and Eccogel polymer matrix. A virtual level-meter was fabricated with a 1-3 type composite probe and electronic unit for underwater application. There was no difference in values between a virtual and measured level on its level meter.

  • PDF