• Title/Summary/Keyword: Virtual Skeleton model

Search Result 13, Processing Time 0.023 seconds

Movement Detection Algorithm Using Virtual Skeleton Model (가상 모델을 이용한 움직임 추출 알고리즘)

  • Joo, Young-Hoon;Kim, Se-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.731-736
    • /
    • 2008
  • In this paper, we propose the movement detection algorithm by using virtual skeleton model. To do this, first, we eliminate error values by using conventioanl method based on RGB color model and eliminate unnecessary values by using the HSI color model. Second, we construct the virtual skeleton model with skeleton information of 10 peoples. After matching this virtual model to original image, we extract the real head silhouette by using the proposed circle searching method. Third, we extract the object by using the mean-shift algorithm and this head information. Finally, we validate the applicability of the proposed method through the various experiments in a complex environments.

Virtual Navigation of Blood Vessels using 3D Curve-Skeletons (3차원 골격곡선을 이용한 가상혈관 탐색 방안)

  • Park, Sang-Jin;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.89-99
    • /
    • 2017
  • In order to make a virtual endoscopy system effective for exploring the interior of the 3D model of a human organ, it is necessary to generate an accurate navigation path located inside the 3D model and to obtain consistent camera position and pose estimation along the path. In this paper, we propose an approach to virtual navigation of blood vessels, which makes proper use of orthogonal contours and skeleton curves. The approach generates the orthogonal contours and the skeleton curves from the 3D mesh model and its voxel model, all of which represent the blood vessels. For a navigation zone specified by two nodes on the skeleton curves, it computes the shortest path between the two nodes, estimates the positions and poses of a virtual camera at the nodes in the navigation zone, and interpolates the positions and poses to make the camera move smoothly along the path. In addition to keyboard and mouse input, intuitive hand gestures determined by the Leap Motion SDK are used as user interface for virtual navigation of the blood vessels. The proposed approach provides easy and accurate means for the user to examine the interior of 3D blood vessels without any collisions between the camera and their surface. With a simple user study, we present illustrative examples of applying the approach to 3D mesh models of various blood vessels in order to show its quality and usefulness.

The Study of Skeleton System for Facial Expression Animation (Skeleton System으로 운용되는 얼굴표정 애니메이션에 관한 연구)

  • Oh, Seong-Suk
    • Journal of Korea Game Society
    • /
    • v.8 no.2
    • /
    • pp.47-55
    • /
    • 2008
  • This paper introduces that SSFE(Skeleton System for Facial Expression) to deform facial expressions by rigging of skeletons does same functions with 14 facial muscles based on anatomy. A three dimensional animation tool (MAYA 8.5) is utilized for making the SSFE that presents deformation of mesh models implementing facial expressions around eyes, nose and mouse. The SSFE has a good reusability within diverse human mesh models. The reusability of SSFE can be understood as OSMU(One Source Multi Use) of three dimensional animation production method. It can be a good alternative technique for reducing production budget of animations. It can also be used for three dimensional animation industries such as virtual reality and game.

  • PDF

Size Specification for Customized Production Size and 3D Avatar : An Apparel Industry Case Study

  • Choi, Young Lim
    • Fashion & Textile Research Journal
    • /
    • v.17 no.2
    • /
    • pp.278-286
    • /
    • 2015
  • Fashion industry has tried to adopt the virtual garment technology to reduce the time and effort spent on sample creation. For garment manufacturers to adopt the virtual garment technology as an alternative to sample creation, 3D avatars that meet the needs of each brand should be developed. Virtual garment softwares that are available in the market provide avatars with standardized body models and allow to modify the size by manually entering size specifications. This study proposed a methodology to develop size specifications for 3D avatars as well as brand-customized production sizes. For this, a man's fashion brand which is using virtual garment technology is selected. And the Size Korea database is used to develop size specification based on the customers' body shape. This study developed regression equations on body size specifications, which in turn proposed a regression model to proportionately change size specifications of 3D fitting-models. Based on the each body size calculated by the regression model, a standard model is created, and the skeleton-skin algorithm is applied to the regression model to obtain the results of size changes. Then, the 3D model sizes are tested for size changes as well as measured, which verifies that the regression model reflects body size changes.

Optimised ML-based System Model for Adult-Child Actions Recognition

  • Alhammami, Muhammad;Hammami, Samir Marwan;Ooi, Chee-Pun;Tan, Wooi-Haw
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.929-944
    • /
    • 2019
  • Many critical applications require accurate real-time human action recognition. However, there are many hurdles associated with capturing and pre-processing image data, calculating features, and classification because they consume significant resources for both storage and computation. To circumvent these hurdles, this paper presents a recognition machine learning (ML) based system model which uses reduced data structure features by projecting real 3D skeleton modality on virtual 2D space. The MMU VAAC dataset is used to test the proposed ML model. The results show a high accuracy rate of 97.88% which is only slightly lower than the accuracy when using the original 3D modality-based features but with a 75% reduction ratio from using RGB modality. These results motivate implementing the proposed recognition model on an embedded system platform in the future.

Behavior-classification of Human Using Fuzzy-classifier (퍼지분류기를 이용한 인간의 행동분류)

  • Kim, Jin-Kyu;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2314-2318
    • /
    • 2010
  • For human-robot interaction, a robot should recognize the meaning of human behavior. In the case of static behavior such as face expression and sign language, the information contained in a single image is sufficient to deliver the meaning to the robot. In the case of dynamic behavior such as gestures, however, the information of sequential images is required. This paper proposes behavior classification by using fuzzy classifier to deliver the meaning of dynamic behavior to the robot. The proposed method extracts feature points from input images by a skeleton model, generates a vector space from a differential image of the extracted feature points, and uses this information as the learning data for fuzzy classifier. Finally, we show the effectiveness and the feasibility of the proposed method through experiments.

Goal-oriented Movement Reality-based Skeleton Animation Using Machine Learning

  • Yu-Won JEONG
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.267-277
    • /
    • 2024
  • This paper explores the use of machine learning in game production to create goal-oriented, realistic animations for skeleton monsters. The purpose of this research is to enhance realism by implementing intelligent movements in monsters within game development. To achieve this, we designed and implemented a learning model for skeleton monsters using reinforcement learning algorithms. During the machine learning process, various reward conditions were established, including the monster's speed, direction, leg movements, and goal contact. The use of configurable joints introduced physical constraints. The experimental method validated performance through seven statistical graphs generated using machine learning methods. The results demonstrated that the developed model allows skeleton monsters to move to their target points efficiently and with natural animation. This paper has implemented a method for creating game monster animations using machine learning, which can be applied in various gaming environments in the future. The year 2024 is expected to bring expanded innovation in the gaming industry. Currently, advancements in technology such as virtual reality, AI, and cloud computing are redefining the sector, providing new experiences and various opportunities. Innovative content optimized for this period is needed to offer new gaming experiences. A high level of interaction and realism, along with the immersion and fun it induces, must be established as the foundation for the environment in which these can be implemented. Recent advancements in AI technology are significantly impacting the gaming industry. By applying many elements necessary for game development, AI can efficiently optimize the game production environment. Through this research, We demonstrate that the application of machine learning to Unity and game engines in game development can contribute to creating more dynamic and realistic game environments. To ensure that VR gaming does not end as a mere craze, we propose new methods in this study to enhance realism and immersion, thereby increasing enjoyment for continuous user engagement.

Interactive Shape Analysis of the Hippocampus in a Virtual Environment (가상 환경에서의 해마 모델에 대한 대화식 형상 분석☆)

  • Kim, Jeong-Sik;Choi, Soo-Mi
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.165-181
    • /
    • 2009
  • This paper presents an effective representation scheme for the shape analysis of the hippocampal structure and a stereoscopic-haptic environment to enhance sense of realism. The parametric model and the 3D skeleton represent various types of hippocampal shapes and they are stored in the Octree data structure. So they can be used for the interactive shape analysis. And the 3D skeleton-based pose normalization allows us to align a position and an orientation of the 3D hippocampal models constructed from multimodal medical imaging data. We also have trained Support Vector Machine (SVM) for classifying between the normal controls and epileptic patients. Results suggest that the presented representation scheme provides various level of shape representation and the SVM can be a useful classifier in analyzing the shape differences between two groups. A stereoscopic-haptic virtual environment combining an auto-stereoscopic display with a force-feedback (or haptic) device takes an advantage of 3D applications for medicine because it improves space and depth perception.

  • PDF

Virtual DressUp system by using image deformation method (이미지 변형 기법을 이용한 가상 드레스업 시스템)

  • Kim, Na-Ri;Yoon, Jong-Chul;Lee, In-Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • This paper introduces a virtual dress up system, according to user's input model and garment image. At first step, we deform the garment image by using skeleton structures and ARAP method. Next step, sampling the boundary points and find their matching vertices which are used for optimizing the boundary fitting. In 2D rendering of the dress up, they have some unrealistic results, so we reconstruct the garment mesh to the 3D mesh. Rendering from the reconstructed 3D mesh, we can get the final dress up result. We present that our system produce a visually plausible and well-fitted virtual dress up results.

  • PDF

Single Image-Based 3D Tree and Growth Models Reconstruction

  • Kim, Jaehwan;Jeong, Il-Kwon
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.450-459
    • /
    • 2014
  • In this paper, we present a new, easy-to-generate system that is capable of creating virtual 3D tree models and simulating a variety of growth processes of a tree from a single, real tree image. We not only construct various tree models with the same trunk through our proposed digital image matting method and skeleton-based abstraction of branches, but we also animate the visual growth of the constructed 3D tree model through usage of the branch age information combined with a scaling factor. To control the simulation of a tree growth process, we consider tree-growing attributes, such as branching orders, branch width, tree size, and branch self-bending effect, at the same time. Other invisible branches and leaves are automatically attached to the tree by employing parametric branch libraries under the conventional procedural assumption of structure having a local self-similarity. Simulations with a real image confirm that our system makes it possible to achieve realistic tree models and growth processes with ease.