• Title/Summary/Keyword: Virtual Laboratory System

Search Result 133, Processing Time 0.024 seconds

Single Image-Based 3D Tree and Growth Models Reconstruction

  • Kim, Jaehwan;Jeong, Il-Kwon
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.450-459
    • /
    • 2014
  • In this paper, we present a new, easy-to-generate system that is capable of creating virtual 3D tree models and simulating a variety of growth processes of a tree from a single, real tree image. We not only construct various tree models with the same trunk through our proposed digital image matting method and skeleton-based abstraction of branches, but we also animate the visual growth of the constructed 3D tree model through usage of the branch age information combined with a scaling factor. To control the simulation of a tree growth process, we consider tree-growing attributes, such as branching orders, branch width, tree size, and branch self-bending effect, at the same time. Other invisible branches and leaves are automatically attached to the tree by employing parametric branch libraries under the conventional procedural assumption of structure having a local self-similarity. Simulations with a real image confirm that our system makes it possible to achieve realistic tree models and growth processes with ease.

The Durability Performance Evaluation of Automotive Components in the Virtual Testing Laboratory (차량 부품의 내구성 평가를 위한 가상시험실 구축)

  • Kim, Gi-Hoon;Kang, Woo-Jong;Kim, Dae-Sung;Ko, Woong-Hee;Lim, Jae-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.68-74
    • /
    • 2006
  • The evaluation of durability performance in Virtual Testing Laboratory(VTL) is a new concept of vehicle design, which can reduce the automotive design period and cost. In this study, the multibody dynamics model of a car is built with a reverse engineering design. Hard points and masses of components are measured by a surface scanning device and imported into CAD system. In order to simulate the non-linear dynamic behavior of force elements such as dampers and bushes, components and materials are tested with specialized test equipments. An optimized numerical model for the damping behavior is used and the hysteresis of bush rubber is considered in the simulation. Loads of components are calculated in VTL and used in the evaluation of durability performance. In order to verify simulation results, loads of components in the vehicle are measured and durability tests are performed.

PHUND (Portable Head Up Navigation Display) for a Motor vehicle

  • Shin, Sung-Chul;Hahn, Sang-Hoon;Chi, Yong-Seok;Ahn, Tae-Jeong;Choi, Ho-Young;Park, Tae-Soo;Kim, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.421-424
    • /
    • 2007
  • We have succeeded in designing a PHUND (portable head up navigation display), which has a compact system with a MD panel and full color display device using RGB LED sources. The PHUND has been developed as an alternative to conventional built-in type HUD system targeting the high volume aftermarket with an affordable price.

  • PDF

Virtual Experimental Kit for Embedded System Education (임베디드 시스템 교육을 위한 가상 실습 키트)

  • Cho, Sang-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.59-67
    • /
    • 2010
  • Laboratory works for embedded system courses are usually performed with hardware based experimental kits that equipped with an embedded board and software development tools. Hardware-based kits have demerits such as high initial setup cost, burdensome maintenance, inadaptability to industry evolution, and restricted educational outcomes. This paper proposes using virtual experimental environments to overcome the demerits of hardware-based kits and describes the design and implementation of a simulation-based virtual experimental kit. With ARM's ARMulator, we developed the kit by adding hardware IPs and user interface modules for peripherals. The developed kit is verified with an experimental program that uses all the augmented software modules. We also ported MicroC/OS-II on the virtual experimental kit for real-time OS experiments.

MPEG-I Immersive Audio Standardization Trend (MPEG-I Immersive Audio 표준화 동향)

  • Kang, Kyeongok;Lee, Misuk;Lee, Yong Ju;Yoo, Jae-hyoun;Jang, Daeyoung;Lee, Taejin
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.723-733
    • /
    • 2020
  • In this paper, MPEG-I Immersive Audio Standardization and related trends are presented. MPEG-I Immersive Audio, which is under the development of standard documents at the exploration stage, can make a user interact with a virtual scene in 6 DoF manner and perceive sounds realistic and matching the user's spatial audio experience in the real world, in VR/AR environments that are expected as killer applications in hyper-connected environments such as 5G/6G. In order to do this, MPEG Audio Working Group has discussed the system architecture and related requirements for the spatial audio experience in VR/AR, audio evaluation platform (AEP) and encoder input format (EIF) for assessing the performance of submitted proponent technologies, and evaluation procedures.

Static Dalvik Bytecode Optimization for Android Applications

  • Kim, Jeehong;Kim, Inhyeok;Min, Changwoo;Jun, Hyung Kook;Lee, Soo Hyung;Kim, Won-Tae;Eom, Young Ik
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.1001-1011
    • /
    • 2015
  • Since just-in-time (JIT) has considerable overhead to detect hot spots and compile them at runtime, using sophisticated optimization techniques for embedded devices means that any resulting performance improvements will be limited. In this paper, we introduce a novel static Dalvik bytecode optimization framework, as a complementary compilation of the Dalvik virtual machine, to improve the performance of Android applications. Our system generates optimized Dalvik bytecodes by using Low Level Virtual Machine (LLVM). A major obstacle in using LLVM for optimizing Dalvik bytecodes is determining how to handle the high-level language features of the Dalvik bytecode in LLVM IR and how to optimize LLVM IR conforming to the language information of the Dalvik bytecode. To this end, we annotate the high-level language features of Dalvik bytecode to LLVM IR and successfully optimize Dalvik bytecodes through instruction selection processes. Our experimental results show that our system with JIT improves the performance of Android applications by up to 6.08 times, and surpasses JIT by up to 4.34 times.

Multiple Virtual Address Spaces for the Operating System Process (다중 가상 주소 공간을 지원하는 운영체제 프로세스)

  • Kim, Ik-Soon;Kim, Sunja;Kim, Chae-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.68-71
    • /
    • 2012
  • 본 논문은 운영 체제(Operating System)에서 수행되는 프로세스(Process)의 가상 주소 공간(Virtual Address Space)을 기존의 단일 가상 주소 공간에서 다중 가상 주소 공간으로 확장시켜서, 하나의 프로세스가 기존보다 더욱 넓은 가상 메모리 영역을 쉽게 사용할 수 있도록 해주는 방안을 제안한다. 최근 컴퓨팅 기기들은 비약적으로 증가한 메모리를 쉽게 사용할 수 있는 수단이 필요하다. 최근 PAE(Physical Address Extension)를 지원하는 32 비트 프로세서나 32 비트 명령어를 같이 지원하는 64비트 프로세서들은 프로세스의 가상 주소 크기보다 더욱 큰 용량의 메모리를 사용할 수 있어서, 한 프로세스가 장착된 메모리의 일부분 밖에 사용할 수 없는 일이 발생한다. 이를 해결하기 위해서 64비트 프로세서의 경우 64-비트 명령어를 사용하지만 이는 프로그램의 명령어 크기나 포인터 변수 크기의 증가로 메모리 사용량을 크게 늘릴 수 있어서 서버 컴퓨터나 데스크탑 PC 와 같이 충분한 양의 메모리를 장착한 시스템에서만 효과적이다. 본 논문에서 제안하는 다중 주소 공간을 지원하는 프로세스는 모바일 및 임베디드 기기와 같이 상대적으로 제한된 용량의 메모리를 지원하는 시스템에 유용할 것으로 기대한다.

S/W Based Frame-Level Synchronization for Irregular Screen Processing System

  • Shin, IlHong;Lee, Seonghee;Lee, Eunjun;Lee, Nam Kyung;Lee, Hyunwoo
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.868-878
    • /
    • 2016
  • A multi-screen environment provides a new opportunity for digital signage applications, where various irregularly shaped screens are employed as an effective means for advertisements and information. A formation method applicable to numerous irregularly shaped screens is proposed to provide a new perspective on digital signage applications. The crucial part of the proposed method comes from the geometric sensing of each screen and the formation of a virtual screen where geometrically aligned content extraction and encoding are employed for content transmission to each screen. In addition, a software-based synchronization method for the proposed system is proposed to address the frame-level synchronization between screens. The experimental results of the proposed method show an improved performance of the frame-level synchronization, where the inconsistency between frames is not identified.

Direction of arrival estimation of non-Gaussian signals for nested arrays: Applying fourth-order difference co-array and the successive method

  • Ye, Changbo;Chen, Weiyang;Zhu, Beizuo;Tang, Leiming
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.869-880
    • /
    • 2021
  • Herein, we estimate the direction of arrival (DOA) of non-Gaussian signals for nested arrays (NAs) by implementing the fourth-order difference co-array (FODC) and successive methods. In particular, considering the property of the fourth-order cumulant (FOC), we first construct the FODC of the NA, which can obtain O(N4) virtual elements using N physical sensors, whereas conventional FOC methods can only obtain O(N2) virtual elements. In addition, the closed-form expression of FODC is presented to verify the enhanced degrees of freedom (DOFs). Subsequently, we exploit the vectorized FOC (VFOC) matrix to match the FODC of the NA. Notably, the VFOC matrix is a single snapshot vector, and the initial DOA estimates can be obtained via the discrete Fourier transform method under the underdetermined correlation matrix condition, which utilizes the complete DOFs of the FODC. Finally, fine estimates are obtained through the spatial smoothing-Capon method with partial spectrum searching. Numerical simulation verifies the effectiveness and superiority of the proposed method.

Progression-Preserving Dimension Reduction for High-Dimensional Sensor Data Visualization

  • Yoon, Hyunjin;Shahabi, Cyrus;Winstein, Carolee J.;Jang, Jong-Hyun
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.911-914
    • /
    • 2013
  • This letter presents Progression-Preserving Projection, a dimension reduction technique that finds a linear projection that maps a high-dimensional sensor dataset into a two- or three-dimensional subspace with a particularly useful property for visual exploration. As a demonstration of its effectiveness as a visual exploration and diagnostic means, we empirically evaluate the proposed technique over a dataset acquired from our own virtual-reality-enhanced ball-intercepting training system designed to promote the upper extremity movement skills of individuals recovering from stroke-related hemiparesis.