• Title/Summary/Keyword: Virtual EV platform

Search Result 2, Processing Time 0.018 seconds

Development of a Battery Model for Electric Vehicle Virtual Platform (전기 자동차 가상 플랫폼용 배터리 모델 개발 및 검증)

  • Kim, Sunwoo;Jo, Jongmin;Han, Jaeyoung;Kim, Sung-Soo;Cha, Hanju;Yu, Sangseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.486-493
    • /
    • 2015
  • In this paper, a battery model for electric vehicle virtual platform was developed. A battery model consisted of a battery cell model and battery thermal management system. A battery cell model was developed based on Randles equivalent circuit model. Circuit parameters in the form of 3D map data was obtained by charge-discharge experiment of Li-Polymer battery in various temperature condition. The developed battery cell model was experimentally verified by comparing voltages. Thermal management system model was also developed using heat generator, heat transfer and convection model, and cooling fan. For verification of the developed battery model in vehicle level, the integrated battery model was applied in to EV(electric vehicle) virtual platform, and virtual driving simulation using UDDS velocity profile was conducted. The accuracy of the developed battery model has been verified by comparing the simulation results from EV platform with the experimental data.

Development of Urban Driving Cycle for Performance Evaluation of Electric Vehicles Part II: Verification of Driving Cycle (전기자동차 성능평가를 위한 도심 주행 모드 개발 Part II: 주행 모드 검증)

  • Jeong, Nak-Tak;Yang, Seong-Mo;Kim, Kwang-Seup;Choi, Su-Bin;Wang, Maosen;You, Sehoon;Kim, Hyunsoo;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • Recently, due to various environmental problems such as global warming, increases of international oil prices, exhaustion of resource, a paradigm of world automobile market is rapidly changing from conventional vehicles using internal combustion engine to eco-friendly vehicles using electric power such as EV, HEV, PHEV and FCEV. Generally, in order to measure fuel consumption and pollutant emissions of cars, chassis dynamometer tests are performed on various driving cycles before actual driving test. There are many driving cycles for performance evaluation of conventional vehicles. However, there is a lack of researches on driving cycle for EV. In this study, the urban driving cycle for performance evaluation of electric vehicles was developed. This study is composed of two parts. In the part 1, the urban driving cycle 'GUDC-EV(Gwacheon-city Urban Driving Cycle for Electric Vehicles)' was developed by using driving data, which were obtained through actual driving experiment, and statistic analysis with chronological table. In this paper part 2, in order to verify the developed driving cycle GUDC-EV, virtual EV platforms were configured and simulations were performed with actual driving data using In addition, simulation results were compared with existing driving cycles such as FTP-72, NEDC and Japan 10-15.