• 제목/요약/키워드: Viral Genome

검색결과 235건 처리시간 0.024초

Host Innate Immunity against Hepatitis E Virus and Viral Evasion Mechanisms

  • Kang, Sangmin;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1727-1735
    • /
    • 2017
  • Hepatitis E virus (HEV) infections cause epidemic or sporadic acute hepatitis, which are mostly self-limiting. However, viral infection in immunocompromised patients and pregnant women may result in serious consequences, such as chronic hepatitis and liver damage, mortality of the latter of which reaches up to 20-30%. Type I interferon (IFN)-induced antiviral immunity is known to be the first-line defense against virus infection. Upon HEV infection in the cell, the virus genome is recognized by pathogen recognition receptors, leading to rapid activation of intracellular signaling cascades. Expression of type I IFN triggers induction of a barrage of IFN-stimulated genes, helping the cells cope with viral infection. Interestingly, some of the HEV-encoded genes seem to be involved in disrupting signaling cascades for antiviral immune responses, and thus crippling cytokine/chemokine production. Antagonistic mechanisms of type I IFN responses by HEV have only recently begun to emerge, and in this review, we summarize known HEV evasion strategies and compare them with those of other hepatitis viruses.

Pathway Analysis in HEK 293T Cells Overexpressing HIV-1 Tat and Nucleocapsid

  • Lee, Min-Joo;Park, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1103-1108
    • /
    • 2009
  • The human immunodeficiency virus (HIV)-l protein Tat acts as a transcription transactivator that stimulates expression of the infected viral genome. It is released from infected cells and can similarly affect neighboring cells. The nucleocapsid is an important protein that has a related significant role in early mRNA expression, and which contributes to the rapid viral replication that occurs during HIV-1 infection. To investigate the interaction between the Tat and nucleocapsid proteins, we utilized cDNA micro arrays using pTat and flag NC cotransfection in HEK 293T cells and reverse transcription-polymerase chain reaction to validate the micro array data. Four upregulated genes and nine downregulated genes were selected as candidate genes. Gene ontology analysis was conducted to define the biological process of the input genes. A proteomic approach using PathwayStudio determined the relationship between Tat and nucleocapsid; two automatically built pathways represented the interactions between the upregulated and downregulated genes. The results indicate that the up- and downregulated genes regulate HIV-1 replication and proliferation, and viral entry.

Development of Anti-viral Agents from Natural Sources

  • Hattori, Masao
    • Plant Resources
    • /
    • 제4권3호
    • /
    • pp.192-195
    • /
    • 2001
  • Human immunodeficiency virus (HIV), the causative agent of AIDS, still continues to spread rapidly in the world population, especially in Africa and Southeast Asia. At present, two kinds of therapeutic approaches are used for treatment of AIDS. One is to target HIV reverse transcriptase, which is responsible for the viral genome transcription. The other is to inhibit HIV pretense PR, which is essential for the processing of viral proteins. Drug combinations based on these approaches can reduce the blood virus to an undetectable level. However, a small amount of virus may lurk inside the immune cells in a dormant state. Another major obstacle of long-term treatment of the disease is remarkable mutation in HIV. Most of the clinical chemotherapeutic agents have one or more of these problems. High cost and harmful side-effects further reduced the desirability of these drugs. In the course our studies on development of anti-HIV agents from natural products, we investigated various crude drugs for their inhibitory activity against HIV-induced cytopathic effects (CPE) in culture cells, HIV-pretense (PR), HIV-reverse transcriptase (RT) including ribonuclease H (RNase H), and HIV integrase (INT). In the present paper, some inhibitory substances relating to the development of anti-HIV agents are reported.

  • PDF

Metatranscriptomic Analysis of Plant Viruses in Imported Pear and Kiwifruit Pollen

  • Lee, Hyo-Jeong;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.220-228
    • /
    • 2022
  • Pollen is a vector for viral transmission. Pollenmediated viruses cause serious economic losses in the fruit industry. Despite the commercial importance of pollen-associated viruses, the diversity of such viruses is yet to be fully explored. In this study, we performed metatranscriptomic analyses using RNA sequencing to investigate the viral diversity in imported apple and kiwifruit pollen. We identified 665 virus-associated contigs, which corresponded to four different virus species. We identified one virus, the apple stem grooving virus, from pear pollen and three viruses, including citrus leaf blotch virus, cucumber mosaic virus, and lychnis mottle virus in kiwifruit pollen. The assembled viral genome sequences were analyzed to determine phylogenetic relationships. These findings will expand our knowledge of the virosphere in fruit pollen and lead to appropriate management of international pollen trade. However, the pathogenic mechanisms of pollen-associated viruses in fruit trees should be further investigated.

Application of genome engineering for treatment of retinal diseases

  • Jo, Dong Hyun;Kim, Jeong Hun
    • BMB Reports
    • /
    • 제51권7호
    • /
    • pp.315-316
    • /
    • 2018
  • Genome engineering with clustered regularly interspaced short palindromic repeats (CRISPR) system can be used as a tool to correct pathological mutations or modulate gene expression levels associated with pathogenesis of human diseases. Owing to well-established local administration methods including intravitreal and subretinal injection, it is relatively easy to administer therapeutic genome engineering machinery to ocular tissues for treating retinal diseases. In this context, we have investigated the potential of in vivo genome engineering as a therapeutic approach in the form of ribonucleoprotein or CRISPR packaged in viral vectors. Major issues in therapeutic application of genome engineering include specificity and efficacy according to types of CRISPR system. In addition to previous platforms based on ribonucleoprotein and CRISPR-associated protein 9 derived from Campylobacter jejuni, we evaluated the therapeutic effects of a CRISPR RNA-guided endonuclease derived from Lachnospiraceae bacterium ND2006 (LbCpf1) in regulating pathological angiogenesis in an animal model of wet-type age-related macular degeneration. LbCpf1 targeting Vegfa or Hif1a effectively disrupted the expression of genes in ocular tissues, resulting in suppression of choroidal neovascularization. It was also notable that there were no significant off-target effects in vivo.

전자현미경 In Situ Hybridization에 의한 Viral RNA의 진단에 관한 연구 (Studies on In Situ Hybridization of Electron Microscopy for Detection of Viral RNA)

  • 최원기;주경웅;김석홍
    • 대한의생명과학회지
    • /
    • 제2권2호
    • /
    • pp.257-265
    • /
    • 1996
  • 토끼 바이러스성 출혈증의 원인체를 실험 토끼에 접종하여 증식을 유도하고 간장에서 hematoxylin & eosin 염 색 에서 조직학적 진단과 세포내 viral RNA의 소재를 결정하기 위해 post-unicryl 포매한 block의 절편을 사용하여 단 염색과 전자현미경적 in situ hybridization을 시도하였다. 토끼 출혈증 viral RNA의 보합 결합에 이용하는 probe는 4717에서 4800(84bases)까지 oligonucleotide를 5'말단에 biotin-CE phosphoramidite로 표지하여 사용하였다. 보합결합물의 증명은 신호 표지로서 antibiotin antibody-l0nm gold를 사용하였으며, hybridization이나 증명은 기존 protocol에서 약간의 변법을 사용하였다. 0.02% glutaraldehyde에서 고정하고 unicryl resin 포매한 표본, biotinylated oligonucleotide probe, antibiotin antibody-l0nm gold로 실험한 결과 증강된 신호를 얻을 수 있었다. 특히 전처리를 생략하므로써 실험 과정을 간단하게 하여 신속한 결과를 얻을 수가 있었다. 전자현미경 in situ hybridization을 통하여 토끼 출혈증 바이러스의 주요 표적은 간세포로 감염 세포의 세포질 내 미토콘드리아와 핵 사이에서 immune gold입자가 뚜렷하게 표지 됨으로서 viral RNA를 증명할 수 있었다.

  • PDF

Molocular Cloning and Sequence Analysis of the Immediate Early Viral Gene, IE1, from Bombyx mori Nuclear Polyhedrosis Virus K1

  • Park, Hye-Jin;Lee, Kwang-Sik;Je, Yeon-Ho;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제3권1호
    • /
    • pp.43-49
    • /
    • 2001
  • We have cloned and characterized an immediate early-1 gene, iel, which is activated immediately upon entrance of the viral genome into the cell nucleus, from Bombyx mori nuclear polyhedrosis virus (BmNPV) K1 strain. This gene encodes a protein 584 amino acids with a predicted molecular weight of 67 kDa. The promoter and coding regions of BmNPV-K1 ie1 showed high homology with Autographa californica nuclear polyhedrosis virus and BmNPV T3 strain. The BmNPV-K1 ie1 was different from amino acid sequence at 4 positions in BmNPV T3. The location of ie1 gene in the BmNPV-K1 genome was confirmed by Southern blot analysis and its expression patterns at the transcriptional level in the infected cells were confirmed by Nerthern hybridization analysis.

  • PDF

A SERI technique reveals an immunosuppressive activity of a serine-rich protein encoded in Cotesia plutellae bracovirus

  • Barandoc, Karen P.;Park, Jay-Young;Kim, Yong-Gyun
    • BMB Reports
    • /
    • 제43권4호
    • /
    • pp.279-283
    • /
    • 2010
  • Polydnavirus genome is segmented and dispersed on host wasp chromosome. After replication, the segments form double- stranded circular DNAs and embedded in viral coat proteins. These viral particles are delivered into a parasitized host along with parasitoid eggs. A serine-rich protein (SRP) is predicted in a polydnavirus, Cotesia plutellae bracovirus (CpBV), genome in its segment no. 33 (CpBV-S33), creating CpBV-SRP1. This study explored its expression and physiological function in the diamondback moth, Plutella xylostella, larvae parasitized by C. plutellae. CpBV-SRP1 encodes 122 amino acids with 26 serines and several predicted phosphorylation sites. It is persistently expressed in all tested tissues of parasitized P. xylostella including hemocyte, fat body, and gut. Its physiological function was analyzed by injecting CpBV-S33 and inducing its expression in nonparasitized P. xylostella by a technique called SERI (segment expression and RNA interference). The expression of CpBV-SRP1 significantly impaired the spreading behavior and total cell count of hemocytes of treated larvae. Subsequent RNA interference of CpBV-SRP1 rescued the immunosuppressive response. This study reports the persistent expression of CpBV-SRP1 in a parasitized host and its parasitic role in suppressing the host immune response by altering hemocyte behavior and survival.

파밤나방 핵다각체병 바이러스의 생화학적 특성 (Biochemical Characteristics of Spodoptera exigua Nuclear Polyhedrosis Virus)

  • 진병래;박범석;재연호;강석권
    • 한국응용곤충학회지
    • /
    • 제30권2호
    • /
    • pp.144-149
    • /
    • 1991
  • 국내에서 분리된 파밤나방 핵다각체병바이러스(Spodoptera exigua nuclear polyhedrosis virus: SeNPV)의 생화학적인 특성을 규명하기 위하여 몇가지 실험을 행하였다. SeNPV는 하나의 envelopeso내에 다수의 nucleocapsid가 존재하는 MNPV(multiple embeded NPV)형태였다. 다각체단백질은 분자량 30kb의 단일 band로 나타났으며, Spodoptera litura NPV와 Bombyx mori NPV의 다각체단백질 항체에 반응하여 뚜렷한 침강선을 형성하였다. 비리온 단백질을 은염색한 결과, 많은 수의 minor band들이 포함된 49개의 band로 나타났으며, 바이러스 DNA를 분리하여 여러종의 제한효소에 의한 대략적인 genome size는 약 110kb 였다.

  • PDF

Genome-Based Virus Taxonomy with the ICTV Database Extension

  • Kang, Shinduck;Kim, Young-Chang
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.22.1-22.5
    • /
    • 2018
  • In 1966, the International Classification of Viruses (ICNV) was established to standardize the naming of viruses. In 1975, the organization was renamed "International Committee on Taxonomy of Viruses (ICTV)," by which it is still known today. The primary virus classification provided by ICTV in 1971 was for viruses infecting vertebrates, which includes 19 genera, 2 families, and 24 unclassified groups. Presently, the 10th virus taxonomy has been published. However, the early classification of viruses was based on clinical results "in vivo" and "in vitro," as well as on the shape of the Phenotype virus. Due to the development of next-generation sequencing and the accompanying bioinformatics analysis pipelines, a reconstruction of the classification system has been proposed. At a meeting held in Boston, USA between June 9-11, 2016, there was even an in-depth discussion regarding the classification of viruses using metagenomic data. One suggested activity that arose from the meeting was that viral taxonomy should be reconstructed, based on genotype and bioinformatics analysis "in silico." This article describes our efforts to achieve this goal by construction of a web-based system and the extension of an associated database, based on ICTV taxonomy. This virus taxonomy web system was designed specifically to extend the virus taxonomy up to strain and isolation, which was then connected with the NCBI database to facilitate searches for specific viral genes; there are also links to journals provided by the EMBL RESTful API that improves accessibility for academic groups.