• Title/Summary/Keyword: Vinyl acetate-co-ethylene

Search Result 42, Processing Time 0.015 seconds

Functional Improvement of Hot Melt Adhesive Using Polyamide Type Resin - (II) The Effects of Terpene Resin - (폴리아미드계 수지를 이용한 핫멜트 접착제의 기능향상 - (II) 테르펜수지의 영향 -)

  • Chung, Kyung-Ho;Hong, Young-Keun;Chun, Young-Sik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.226-231
    • /
    • 1998
  • Hot melt adhesive which is solventless type has been widely used due to the possibility of automated adhesion process. The main purpose of this study is the development of polyamide based hot melt adhesive to improve the property of conventional ethylene-vinyl acetate hot melt adhesive, which has an inherent problem against heat resistance. In this study, it was found that the terpolymers of nylon 6, nylon 66, and nylon 12(CM831, 843P types) instead of nylon homopolymer were suitable base resins for hot melt adhesive, since the disruption of regularity in the polymer chains reduced the crystallinity, resulting in lower melting point and melt viscosity. According to the results, the optimum adhesion property could be obtained by the using 75/25~50/50 weight radio of CM831/843P resin as a base resin. Terpene resin was used as tackifier to improve adhesion and wetting properties. The best result can be obtained with the 10 wt.% addition of terpene resin. The terpene resin acted as proper tackifier in this system which decreased the melt temperature and viscosity, but increased the mechanical strength of adhesive itself. Also, the rheological property of the adhesive changed from typical non-Newtonian behavior to Newtonian behavior as terpene resin was added.

  • PDF

Quality Changes in Oyster Mushrooms during Modified Atmosphere Storage as Affected by Temperatures and Packaging Materials (저장 온도와 포장재에 따른 느타리버섯의 MA 저장 중 품질변화)

  • Choi, Mi-Hee;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1079-1085
    • /
    • 2003
  • Modified atmosphere packaging was applied to oyster mushrooms (Pleurotus ostreatus) to study the effect of storage temperatures and packaging materialso. Whole mushrooms (200g) were package with polyethylene film $(PE,\;60{\mu}m\;thickness)$, ethylene vinyl acetate (EVA), or ceramic film (containing 5% zeolite) and stored at 0, 5, 10 and $20^{\circ}C$. Weight loss, color, firmness, gas composition $(O_2,\;CO_2)$ inside the film package and ethanol content in the tissue of MA packaged mushrooms were examined. Mushroom that were packed unwrapped in a conventional hardboard box (2 kg) lost marketability at a very early stage of storage due to weight loss, shrinkage, browning, and spore formation. During storage, film packaging prevented or retarded the deterioration of the mushrooms in the aspects of appearance, texture, and discoloration. Firmness slightly decreased with storage time. Total color difference was much higher in the control than in the film-packaged mushroom and rapidly increased at the early of storage. Correlation analysis showed a high correlation between total color difference and b values. These results were characterized by the reduced respiration rate resulting from elevated carbon dioxide and reduced oxygen levels in the package. At all storage temperatures, ethanol content in the tissue increased slightly at the early part of storage and rose considerably towards the end of the storage period. Ethanol content in the oyster mushrooms was higher in the stipe than in pileus tissues. The shelf life of the oyster mushrooms was about $8{\sim}11$ days at $0^{\circ}C$, about $4{\sim}6$ day at $5^{\circ}C$, about $2{\sim}3$ days at $10^{\circ}C$, and about $1{\sim}2$ days at $20^{\circ}C$.