• 제목/요약/키워드: View-angle dependent spectrum

검색결과 5건 처리시간 0.176초

상부 발광 유기 발광 소자에서 두께와 시야각에 따른 마이크로 캐비티 특성 (Thickness and Angle Dependent Microcavity Properties in Top-Emission Organic Light-Emitting Diodes)

  • 이원재
    • 한국전기전자재료학회논문지
    • /
    • 제24권1호
    • /
    • pp.32-35
    • /
    • 2011
  • Top-emission device has a merit of high aperture ratio and narrow emission spectrum compared to that of bottom-emission one. Emission spectra of top-emission organic light-emitting diodes depending on a layer thickness and view angle were analyzed using a theory of microcavity. Device structure was manufactured to be Al (100 nm)/TPD/$Alq_3$/LiF (0.5 nm)/Al (2 nm)/Ag (30 nm). N,N'-diphenyl-N,N'- di (m-tolyl)-benzidine (TPD) and tris (8-hydroxyquinoline) aluminium (Alq3) were used as a hole-transport layer and emission layer, respectively. And a thickness of TPD and Alq3 layer was varied in a range of 40 nm~70 nm and 60 nm~110 nm, respectively. Angle-dependent emission spectrum out of the device was measured with a device fixed on a rotating plate. Since the top-emission device has a property of microcavity, it was observed that the emission spectrum shift to a longer wavelength region as the organic layer thickness increases, and to a shorter wavelength region as the view angle increases. Layer thickness and view-angle dependent emission spectra of the device were analyzed in terms of microcavity theory. A reflectivity of semitransparent cathode and optical path length were deduced.

Layer Thickness-dependent Electrical and Optical Properties of Bottom- and Top-emission Organic Light-emitting Diodes

  • An, Hui-Chul;Na, Su-Hwan;Joo, Hyun-Woo;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권1호
    • /
    • pp.28-30
    • /
    • 2009
  • We have studied organic layer-thickness dependent electrical and optical properties of bottom- and top-emission devices. Bottom-emission device was made in a structure of ITO(170 nm)/TPD(x nm)/$Alq_3$(y nm)/LiF(0.5 nm)/Al(100 nm), and a top-emission device in a structure of glass/Al(100 nm)/TPD(x nm)/$Alq_3$(y nm)/LiF(0.5 nm)/Al(25 nm). A hole-transport layer of TPD (N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine) was thermally deposited in a range of 35 nm and 65 nm, and an emissive layer of $Alq_3$ (tris-(8-hydroxyquinoline) aluminum) was successively deposited in a range of 50 nm and 100 nm. Thickness ratio between the hole-transport layer and the emissive layer was maintained to be 2:3, and a whole layer thickness was made to be in a range of 85 and 165 nm. From the current density-luminance-voltage characteristics of the bottom-emission devices, a proper thickness of the organic layer (55 nm thick TPD and 85 nm thick $Alq_3$ layer) was able to be determined. From the view-angle dependent emission spectrum of the bottom-emission device, the peak wavelength of the spectrum does not shift as the view angle increases. However, for the top-emission device, there is a blue shift in peak wavelength as the view angle increases when the total layer thickness is thicker than 140 nm. This blue shift is thought to be due to a microcavity effect in organic light-emitting diodes.

전면 유기 발광 소자의 유기물층 두께 변화에 따른 광학적 특성 (Organic-layer thickness dependent optical properties of top emission organic light-eitting diodes)

  • 안희철;주현우;나수환;김태완;홍진웅;오용철;송민종
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.413-414
    • /
    • 2008
  • We have studied an organic layer thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top emission device, structure is Al(100nm)ITPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(23nm). While a thickness of hole-transport layer of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm for two devices. A ratio of those two layers was kept to about 2:3. Variation of the layer thickness changes a traverse time of injected carriers across the organic layer, so that it may affect on the chance of probability of exciton formation. View-angle dependent emission spectra were measured for the optical measurements. Top-emission devices show that the emission peak wavelength shifts to longer wavelength as the organic layer thickness increases. For instance, it shifts from 490 to 555nm in the thickness range that we used. View-angle dependent emission spectra show that the emission intensity decreases as the view-angle increases. The organic layer thickness-dependent emission spectra show that the full width at half maximum decreases as the organic layer thickness increases. Top emission devices show that the full width at half maximum changes from 90 to 35nm as the organic layer thickness increases. In top-emission device, the microcavity effect is more vivid as the organic layer thickness increases.

  • PDF

전면 유기 발광 소자의 유기물층과 반투명 전극의 두께 변화에 따른 광학적 특성 (Organic-layer and semitransparent electrode thickness dependent optical properties of top-emission organic light-emitting diodes)

  • 안희철;주현우;나수환;한원근;김태완;이원재;정동회
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.57-58
    • /
    • 2008
  • We have studied an organic layer and semitransparent Al electrode thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top-emission device structure is Al(100nm)/TPD(xnm)/Alq(ynm)/LiF(0.5nm)/Al(25nm). While a thickness of total organic layer was varied from 85nm to 165n, a ratio of those two layers was kept to be about 2:3. Semitransparent Al cathode was varied from 20nm to 30nm for the device with an organic layer total thickness of 140nm. As the thickness of total organic layer increases, the emission spectra show a shift of peak wavelength from 490nm to 580nm, and the full width at half maxima from 90nm to 35nm. The emission spectra show a blue shift as the view angle increases. Emission spectra depending on a transmittance of semitransparent cathode show a shift of peak wavelength from 515nm to 593nm. At this time, the full width at half maximum was about to be a constant of 50nm. With this kind of microcavity effect, we were able to control the emission spectra from the top-emission organic light-emitting diodes.

  • PDF

유기물층 두께변화에 따른 유기발광 소자의 전기적 및 광학적 특성 (Organic-layer thickness dependent electrical and electrical and optical properties of organic light-eitting diodes)

  • 안희철;주현우;나수환;한원근;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 및 기술 세미나 논문집 디스플레이 광소자
    • /
    • pp.27-28
    • /
    • 2008
  • We have studied an organic layer-thickness dependent electrical and optical properties of organic light-emitting diodes in a device structure of ITO/TPD/$Alq_3$/LiF/Al. While a hole-transport layer thickness of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm. A ratio of those two layers was kept to about 2:3. Variation of the layer thickness changes a traverse time of injected carriers across the organic layer, so that it may affect on the chance of probability of exciton formation. Current-voltage-luminance characteristics of the devices show that there are typical rectifying behaviors, and the luminance reaches about $30,000cd/m^2$. Thickness-dependent current efficiency shows that there is a gradual increase of the efficiency as the total layer thickness increases. The efficiency becomes saturated to be about 10cd/A when the total thickness is above 140nm. They show that emission was from the $Alq_3$ layer, because the peak wavelength is about 525nm. View angle-dependent emission spectra show that the emission intensity decreases as the angle increases.

  • PDF