• Title/Summary/Keyword: View Object

Search Result 931, Processing Time 0.027 seconds

Walking Features Detection for Human Recognition

  • Viet, Nguyen Anh;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.787-795
    • /
    • 2008
  • Human recognition on camera is an interesting topic in computer vision. While fingerprint and face recognition have been become common, gait is considered as a new biometric feature for distance recognition. In this paper, we propose a gait recognition algorithm based on the knee angle, 2 feet distance, walking velocity and head direction of a person who appear in camera view on one gait cycle. The background subtraction method firstly use for binary moving object extraction and then base on it we continue detect the leg region, head region and get gait features (leg angle, leg swing amplitude). Another feature, walking speed, also can be detected after a gait cycle finished. And then, we compute the errors between calculated features and stored features for recognition. This method gives good results when we performed testing using indoor and outdoor landscape in both lateral, oblique view.

  • PDF

Development of Signal Monitoring Platform for Sound Source Localization System

  • Myagmar, Enkhzaya;Kwon, Soon Ryang;Lee, Dong Myung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.961-963
    • /
    • 2012
  • The sound source localization system is used to some area such as robotic system, object localization system, guarding system and medicine. So time delay estimation and angle estimation of sound direction are studied until now. These days time delay estimation is described in LabVIEW which is used to create innovative computer-based product and deploy measurement and control systems. In this paper, the development of signal monitoring platform is presented for sound source localization. This platform is designed in virtual instrument program and implemented in two stages. In first stage, data acquisition system is proposed and designed to analyze time delay estimation using cross correlation. In second stage, data obtaining system which is applied and designed to monitor analog signal processing is proposed.

Automatic Fish Size Measurement System for Smart Fish Farm Using a Deep Neural Network (심층신경망을 이용한 스마트 양식장용 어류 크기 자동 측정 시스템)

  • Lee, Yoon-Ho;Jeon, Joo-Hyeon;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.177-183
    • /
    • 2022
  • To measure the size and weight of the fish, we developed an automatic fish size measurement system using a deep neural network, where the YOLO (You Only Look Once)v3 model was used. To detect fish, an IP camera with infrared function was installed over the fish pool to acquire image data and used as input data for the deep neural network. Using the bounding box information generated as a result of detecting the fish and the structure for which the actual length is known, the size of the fish can be obtained. A GUI (Graphical User Interface) program was implemented using LabVIEW and RTSP (Real-Time Streaming protocol). The automatic fish size measurement system shows the results and stores them in a database for future work.

Development of Camera Module for Vehicle Safety Support (차량 안전 지원용 카메라 모듈 개발)

  • Shin, Seong-Yoon;Cho, Seung-Pyo;Shin, Kwang-Seong;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.672-673
    • /
    • 2022
  • In this paper, we discuss a camera that is fixed in the same view as the TOF sensor and can be installed horizontally in the vehicle's moving direction. This camera applies 1280×720 resolution to improve object recognition accuracy, outputs images at 30fps, and can apply a wide-angle fisheye lens of 180° or more.

  • PDF

3D Reconstruction using multi-view structured light (다시점 구조광을 이용한 3D 복원)

  • Kang, Hyunmin;Park, Yongmun;Seo, Yongduek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.288-289
    • /
    • 2022
  • In this paper, we propose a method of obtaining high density geometric information using multi-view structured light. Reconstruction error due to the difference in resolution between the projector and the camera occurs when reconstruction a 3D shape from a structured light system to a single projector. This shows that the error in the point cloud in 3D is also the same when reconstruction the shape of the object. So we propose a high density method using multiple projectors to solve such a reconstruction error.

A Real-time Augmented Reality System using Hand Geometric Characteristics based on Computer Vision (손의 기하학적인 특성을 적용한 실시간 비전 기반 증강현실 시스템)

  • Choi, Hee-Sun;Jung, Da-Un;Choi, Jong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.323-335
    • /
    • 2012
  • In this paper, we propose an AR(augmented reality) system using user's bare hand based on computer vision. It is important for registering a virtual object on the real input image to detect and track correct feature points. The AR systems with markers are stable but they can not register the virtual object on an acquired image when the marker goes out of a range of the camera. There is a tendency to give users inconvenient environment which is limited to control a virtual object. On the other hand, our system detects fingertips as fiducial features using adaptive ellipse fitting method considering the geometric characteristics of hand. It registers the virtual object stably by getting movement of fingertips with determining the shortest distance from a palm center. We verified that the accuracy of fingertip detection over 82.0% and fingertip ordering and tracking have just 1.8% and 2.0% errors for each step. We proved that this system can replace the marker system by tacking a camera projection matrix effectively in the view of stable augmentation of virtual object.

GPU-based Image-space Collision Detection among Closed Objects (GPU를 이용한 이미지 공간 충돌 검사 기법)

  • Jang, Han-Young;Jeong, Taek-Sang;Han, Jung-Hyun
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • This paper presents an image-space algorithm to real-time collision detection, which is run completely by GPU. For a single object or for multiple objects with no collision, the front and back faces appear alternately along the view direction. However, such alternation is violated when objects collide. Based on these observations, the algorithm propose the depth peeling method which renders the minimal surface of objects, not whole surface, to find colliding. The Depth peeling method utilizes the state-of-the-art functionalities of GPU such as framebuffer object, vertexbuffer object, and occlusion query. Combining these functions, multi-pass rendering and context switch can be done with low overhead. Therefore proposed approach has less rendering times and rendering overhead than previous image-space collision detection. The algorithm can handle deformable objects and complex objects, and its precision is governed by the resolution of the render-target-texture. The experimental results show the feasibility of GPU-based collision detection and its performance gain in real-time applications such as 3D games.

  • PDF

Database Design for an Urban Geographic Information System based on an Object-oriented Approach (객체지향접근방식을 기반으로 한 도시지리정보시스템의 데이터베이스 설계에 관한 연구)

  • Ock, Han-Suk;Kim, Gap-Youl;Kim, Chang-Hwan;Kim, Sang-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.2
    • /
    • pp.56-66
    • /
    • 1998
  • The primary goal of the database design is to organize a large amount of data effectively in users and systems view point. Effective design of a database is very important for processing applications efficiently. In this paper, we discuss database design for an urban geographic information system that effectively maintains the cadastral and planimetric information. We first collect and analyze the requirements for the target urban geographic information system and then perform database design for these requirements. Our database design is based on the object-oriented approach that has rich expressive power and good reusability in comparison with the traditional relational approach. Especially, we employ the OMT, one of the most widely-used object-oriented models. We expect that our result would be helpful in building large databases for urban geographic information systems practically.

  • PDF

An Object Oriented Spatial Data Model Based on Geometric attributes and the Role of Spatial Relationships in Geo-objects and Geo-fields (지리-객체와 지리-필드에서 기하 속성과 공간관계 역할에 기반한 객체 지향 공간 데이터 모델)

  • Lee, Hong-Ro
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.516-572
    • /
    • 2001
  • Geographic Information System(CIS) deal with data which can potentially be useful for a wide range of applications. The information needed by each application can be vary, specially in resolution, detail level, application view, and representation style, as defined in the modeling phase of the geographic database design. To be able to deal with such diverse needs, GIS must offer features that allow multiple representation for each geographic entity of phenomenon. This paper addresses on the problem of formal definition of the objects and their relationships on the geographical information systems. The geographical data is divided into two main classes : geo-objects and geo-fields, which describe discrete and continuous representations of spatial reality. I studied the attributes and the relationship roles over geo-object and nongeo-object. Therefore, this paper contributed on the efficient design of geographical class hierarchy schema by means of formalizing attribute-domains of classes.

  • PDF

Design of a spatiotemporal object model for 2D geographic objects (2차원 지리 객체를 위한 시공간 객체 모델 설계)

  • Lee, Hyeon-Ah;Nam, Kwang-Woo;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.43-56
    • /
    • 2002
  • Most of works have been performed on representation of spatiotemporal objects from various points of view. Most of them represent spatiotemporal objects using approaches from GIS, temporal databases, object-oriented databases or data type. Spatiotemporal objects can be classified as objects whose position and shape changes discretely over time, objects whose position changes continuously and objects whose shape changes continuously as well as position. Previous works on spatiotemporal model have focused on only one of them. In this paper, we propose a spatiotemporal model that can represent three types of objects in Euclidean plan. For this purpose, we represent both discrete and continuous moving objects by defining temporal model extended from valid time and by defining relationship between two consecutive versions of objects. The proposed spatiotemporal object model is based on open GIS specification so that it has compatibility with existing spatial data model.