• Title/Summary/Keyword: View Calibration

Search Result 170, Processing Time 0.027 seconds

Convenient View Calibration of Multiple RGB-D Cameras Using a Spherical Object (구형 물체를 이용한 다중 RGB-D 카메라의 간편한 시점보정)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.309-314
    • /
    • 2014
  • To generate a complete 3D model from depth images of multiple RGB-D cameras, it is necessary to find 3D transformations between RGB-D cameras. This paper proposes a convenient view calibration technique using a spherical object. Conventional view calibration methods use either planar checkerboards or 3D objects with coded-pattern. In these conventional methods, detection and matching of pattern features and codes takes a significant time. In this paper, we propose a convenient view calibration method using both 3D depth and 2D texture images of a spherical object simultaneously. First, while moving the spherical object freely in the modeling space, depth and texture images of the object are acquired from all RGB-D camera simultaneously. Then, the external parameters of each RGB-D camera is calibrated so that the coordinates of the sphere center coincide in the world coordinate system.

Extrinsic calibration using a multi-view camera (멀티뷰 카메라를 사용한 외부 카메라 보정)

  • 김기영;김세환;박종일;우운택
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we propose an extrinsic calibration method for a multi-view camera to get an optimal pose in 3D space. Conventional calibration algorithms do not guarantee the calibration accuracy at a mid/long distance because pixel errors increase as the distance between camera and pattern goes far. To compensate for the calibration errors, firstly, we apply the Tsai's algorithm to each lens so that we obtain initial extrinsic parameters Then, we estimate extrinsic parameters by using distance vectors obtained from structural cues of a multi-view camera. After we get the estimated extrinsic parameters of each lens, we carry out a non-linear optimization using the relationship between camera coordinate and world coordinate iteratively. The optimal camera parameters can be used in generating 3D panoramic virtual environment and supporting AR applications.

  • PDF

Multiple Camera Calibration for Panoramic 3D Virtual Environment (파노라믹 3D가상 환경 생성을 위한 다수의 카메라 캘리브레이션)

  • 김세환;김기영;우운택
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.137-148
    • /
    • 2004
  • In this paper, we propose a new camera calibration method for rotating multi-view cameras to generate image-based panoramic 3D Virtual Environment. Since calibration accuracy worsens with an increase in distance between camera and calibration pattern, conventional camera calibration algorithms are not proper for panoramic 3D VE generation. To remedy the problem, a geometric relationship among all lenses of a multi-view camera is used for intra-camera calibration. Another geometric relationship among multiple cameras is used for inter-camera calibration. First camera parameters for all lenses of each multi-view camera we obtained by applying Tsai's algorithm. In intra-camera calibration, the extrinsic parameters are compensated by iteratively reducing discrepancy between estimated and actual distances. Estimated distances are calculated using extrinsic parameters for every lens. Inter-camera calibration arranges multiple cameras in a geometric relationship. It exploits Iterative Closet Point (ICP) algorithm using back-projected 3D point clouds. Finally, by repeatedly applying intra/inter-camera calibration to all lenses of rotating multi-view cameras, we can obtain improved extrinsic parameters at every rotated position for a middle-range distance. Consequently, the proposed method can be applied to stitching of 3D point cloud for panoramic 3D VE generation. Moreover, it may be adopted in various 3D AR applications.

Remote Calibration Control and Monitoring System for Conveyor Scale using LabVIEW (LabVIEW를 이용한 Conveyor Scale의 원격 교정제어 및 모니터링 시스템)

  • Bang, Nam-Soo;Jang, Woo-Jin;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.72-80
    • /
    • 2012
  • In general, electronic conveyor scales are installed in a relatively distributed manner on the crushed rock and sand production site. It is one of the time-consuming and difficult engineering works to monitor and control the plant operation status such as the management of measuring data, malfunction of belt conveyor, and fault of electronic conveyor scale. Therefore, to alleviate the inefficient problems and to monitor the operating plant in the online and remote control room, a remote calibration and real-time monitoring system, which is practically applied to the electronic conveyor scale system and verified by onsite experiment, is developed based on the LabVIEW.

Comparative Study on Accuracy and Usefulness of Calibration Using CT T.O.D (단층촬영영상을 이용한 T.O.D Calibration의 정확성과 유용성에 관한 비교연구)

  • Seo, Jeong-Beom;Kim, Dong-Hyeon;Lee, Jeong-Beom
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • Uses a Tomographic scan image and Table Object Distance(TOD) price after measuring, uses accuracy and usability of blood vessel diameter(Vessel Diameter) measurement under comparison evaluating boil TOD Calibration. The patient who enforces Prosecuting Attorney abdomen Tomographic scan in the object the superior mesentery artery uses PACS View from abdomen fault image and from blood vessel diameter and the table measures the height until of the blood vessel. Uses Angio Catheter from Angiography(5 Fr.) and enforces is measured from PACS View the height until of the table which and the blood vessel at TOD Calibration price and the size of the superior mesentery artery inputs measures an superior mesentery artery building skill. Catheter Calibration input Agnio Catheter where uses in Angiography the size of the superior mesentery artery at Catheter Calibration price and they measure. Produced an accuracy from monitoring data and comparison evaluated. The statistical program used SPSS. TOD Calibration accuracy was 96.53%, standard deviation is 0.03829. Catheter Calibration accuracy of 92.91%, standard deviation is 0.05085. Represents a statistically significant difference(p = 0). According to age and gender was not statistically significant(p > 0.05). TOD Calibration correlation coefficient R-squared of 88.8%, Catheter Calibration of the R-squared is 75.5%. High accuracy of both methods. Through this study, CT images using the measured distance between the table and the Object, TOD Calibration accuracy higher than two Catheter Calibration was measured. TOD and Catheter Calibration represents a statistically significant difference(p = 0).

  • PDF

A Study on the Development of CCTV Camera Autonomous Posture Calibration Algorithm for Simultaneous Operation of Traffic Information Collection and Monitoring (교통정보 수집 및 감시 동시운영을 위한 CCTV 카메라 자율자세 보정 알고리즘 개발에 관한 연구)

  • Jun Kyu Kim;Jun Ho Jung;Hag Yong Han;Chi Hyun SHIN
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.115-125
    • /
    • 2023
  • This paper relates to the development of CCTV camera posture calibration algorithm that can simultaneously collect traffic information such as traffic volume and speed in the state of view of the CCTV camera set for traffic monitoring. The developed autonomous posture calibration algorithm uses vehicle recognition and tracking techniques to identify the road, and automatically determines the angle of view for the operator's traffic surveillance and traffic information collection. To verify the performance of the proposed algorithm, a CCTV installed on site was used, and the results of the angle of view automatically calculated by the autonomous posture calibration algorithm for the angle of view set for traffic surveillance and traffic information collection were compared.

Dynamic Stitching Algorithm for 4-channel Surround View System using SIFT Features (SIFT 특징점을 이용한 4채널 서라운드 시스템의 동적 영상 정합 알고리즘)

  • Joongjin Kook;Daewoong Kang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.56-60
    • /
    • 2024
  • In this paper, we propose a SIFT feature-based dynamic stitching algorithm for image calibration and correction of a 360-degree surround view system. The existing surround view system requires a lot of processing time and money because in the process of image calibration and correction. The traditional marker patterns are placed around the vehicle and correction is performed manually. Therefore, in this study, images captured with four fisheye cameras mounted on the surround view system were distorted and then matched with the same feature points in adjacent images through SIFT-based feature point extraction to enable image stitching without a fixed marker pattern.

  • PDF

Characteristics of COMS MI Radiometric Calibration

  • Cho, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.71-74
    • /
    • 2006
  • Communication Ocean Meteorological Satellite (COMS) is planned to be launched onto Geostationary Earth Orbit in 2008. The meteorological imager (MI) is one of COMS payloads and has 5 spectral channels to monitor meteorological phenomenon around the Korean peninsular intensively and of Asian-side full Earth disk periodically. The MI has on-board radiometric calibration capabilities called 'blackbody calibration' for infrared channels and 'space look' for infrared/visible channels, and radiometric response stability monitoring device called 'albedo monitor' for visible channel. Additionally the MI has on-board function called 'electrical calibration' for the check of imaging path electronics of both infrared and visible channels. The characterization of MI performance is performed to provide the pre-launch radiometric calibration data which will be used for in-orbit radiometric calibration with the on-board calibration outputs. The radiometric calibration of the COMS MI is introduced in the view point of instrument side in terms of in-orbit calibration devices and capabilities as well as the pre-launch calibration activities and expected outputs.

  • PDF

Camera Calibration and Barrel Undistortion for Fisheye Lens (차량용 어안렌즈 카메라 캘리브레이션 및 왜곡 보정)

  • Heo, Joon-Young;Lee, Dong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1270-1275
    • /
    • 2013
  • A lot of research about camera calibration and lens distortion for wide-angle lens has been made. Especially, calibration for fish-eye lens which has 180 degree FOV(field of view) or above is more tricky, so existing research employed a huge calibration pattern or even 3D pattern. And it is important that calibration parameters (such as distortion coefficients) are suitably initialized to get accurate calibration results. It can be achieved by using manufacturer information or lease-square method for relatively narrow FOV(135, 150 degree) lens. In this paper, without any previous manufacturer information, camera calibration and barrel undistortion for fish-eye lens with over 180 degree FOV are achieved by only using one calibration pattern image. We applied QR decomposition for initialization and Regularization for optimization. With the result of experiment, we verified that our algorithm can achieve camera calibration and image undistortion successfully.

Calibration Method for the Panel-type Multi-view Display

  • Kim, Jonghyun;Lee, Chang-Kun;Hong, Jong-Young;Jang, Changwon;Jeong, Youngmo;Yeom, Jiwoon;Lee, Byoungho
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.477-486
    • /
    • 2015
  • We propose a novel calibration method which can be applied to all kinds of panel-type multi-view displays. We analyze how the angular, the axial, and the lateral misalignment affects the 3D image quality in a panel-type multi-view display. We demonstrate the ray optics simulation with a 3-view slanted parallax barrier system using pentile display for the quantitative calculation. Based on the analysis, we propose a new alignment pattern for all kinds of panel-type multi-view displays. The proposed pattern is sensitive to all of the angular, the axial, and the lateral misalignments. The high spatial frequency images and on and off alignment in the proposed pattern help observers to calibrate the system easily. We theoretically show the generality of the proposed alignment pattern and verify the pattern with image simulations and experiments.