• 제목/요약/키워드: Video-based Learning

검색결과 677건 처리시간 0.027초

딥러닝을 이용한 육불화텅스텐(WF6) 제조 공정의 지능형 영상 감지 시스템 구현 (Implementation of an Intelligent Video Detection System using Deep Learning in the Manufacturing Process of Tungsten Hexafluoride)

  • 손승용;김영목;최두현
    • 한국재료학회지
    • /
    • 제31권12호
    • /
    • pp.719-726
    • /
    • 2021
  • Through the process of chemical vapor deposition, Tungsten Hexafluoride (WF6) is widely used by the semiconductor industry to form tungsten films. Tungsten Hexafluoride (WF6) is produced through manufacturing processes such as pulverization, wet smelting, calcination and reduction of tungsten ores. The manufacturing process of Tungsten Hexafluoride (WF6) is required thorough quality control to improve productivity. In this paper, a real-time detection system for oxidation defects that occur in the manufacturing process of Tungsten Hexafluoride (WF6) is proposed. The proposed system is implemented by applying YOLOv5 based on Convolutional Neural Network (CNN); it is expected to enable more stable management than existing management, which relies on skilled workers. The implementation method of the proposed system and the results of performance comparison are presented to prove the feasibility of the method for improving the efficiency of the WF6 manufacturing process in this paper. The proposed system applying YOLOv5s, which is the most suitable material in the actual production environment, demonstrates high accuracy (mAP@0.5 99.4 %) and real-time detection speed (FPS 46).

멀티미디어 수화 콘텐츠의 Semantic Logic 플랫폼 연구 (A Study on Semantic Logic Platform of multimedia Sign Language Content)

  • 정회준;박대우;한경돈
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.199-206
    • /
    • 2009
  • 초고속 인터넷의 발달로 멀티미디어 수화 콘텐츠가 청각장애인의 수화교육에 활용되고 있다. 수화교육에서 사용되는 대부분 콘텐츠는 한글단어에 대한 수화표현을 수화동영상으로 보여주는 내용이다. 수화를 처음 배우거나, 수화에 익숙하지 않은 사용자들은 수화특성을 이해하기 어렵고, 수화표현에 어려움을 나타내고 있다. 본 논문에서는 온라인에서 수화표현을 학습하기 위해서 수화가 가지고 있는 특성을 참고하고, Semantic Logic을 적용한 멀티미디어 동영상기반의 수화 콘텐츠 모형에 대한 플랫폼 설계를 연구하고자 한다.

모바일 데이터 사용량을 고려한 딥러닝 기반 적응형 비디오 스트리밍 (Deep Learning based Adaptive Video Streaming with Mobile Data Usage)

  • 김민섭;허성재;이희종;부반손;최민제;임경식
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.225-228
    • /
    • 2021
  • 최근 모바일 비디오 스트리밍 서비스의 이용자 수가 증가하고 있다. 이에 따라 모바일 환경에 적합한 DASH 비디오 스트리밍 메커니즘이 연구되었고, 이것을 DQN 기법에 의해 개선한 알고리즘은 모바일 네트워크 환경에서 적절한 비디오 품질 선택을 통해 버퍼링을 크게 줄일 수 있었다. 그러나 이는 모바일 요금제로 비디오 스트리밍 서비스를 이용하는 사용자들에게 안정적인 서비스를 제공하기 어렵다. 이에 본 논문은 기존의 DQN 기법에 의한 알고리즘을 발전시켜 사용자의 모바일 요금제에 적합한 비디오 품질을 선택하는 알고리즘을 연구하고 성능 실험 결과를 분석한다. 또한 이 알고리즘을 전체 모바일 비디오 스트리밍 시스템과 통합하여 이용하도록 제안한다.

  • PDF

비디오 질의 응답 시스템을 위한 전이 학습 기반의 멀티 모달 퓨전 정답 선택 모델 (Transfer Learning-based Multi-Modal Fusion Answer Selection Model for Video Question Answering System)

  • 박규민;박성배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.548-553
    • /
    • 2021
  • 비디오 질의 응답은 입력으로 주어진 비디오와 질문에 적절할 정답을 제공하기 위해 텍스트, 이미지 등 다양한 정보처리가 요구되는 대표적인 multi-modal 문제이다. 질의 응답 시스템은 질의 응답의 성능을 높이기 위해 다수의 서로 다른 응답 모듈을 사용하기도 하며 생성된 정답 후보군 중 가장 적절할 정답을 선택하는 정답 선택 모듈이 필요하다. 정답 선택 모듈은 응답 모듈의 서로 다른 관점을 고려하여 응답 선택을 선택할 필요성이 있다. 하지만 응답 모듈이 black-box 모델인 경우 정답 선택 모듈은 응답 모듈의 parameter와 예측 분포를 통해 지식을 전달 받기 어렵다. 그리고 학습 데이터셋은 응답 모듈이 학습에 사용했기 때문에 과적합 문제로 각 모듈의 관점을 학습하기엔 어려우며 학습 데이터셋 이외 비교적 적은 데이터셋으로 학습해야 하는 문제점이 있다. 본 논문에서는 정답 선택 성능을 높이기 위해 전이 학습 기반의 멀티모달 퓨전 정답 선택 모델을 제안한다. DramaQA 데이터셋을 통해 성능을 측정하여 제안된 모델의 우수성을 실험적으로 증명하였다.

  • PDF

딥 러닝 기반 Super Slow 비디오 서비스 (Deep Learning-Based Super Slow Video Service)

  • 이동연;박진수;남진우;최해철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.354-357
    • /
    • 2020
  • 최근 스포츠 경기나 차량 블랙박스 등에서 비디오를 이용한 판정이 점차 확대되고 있지만, 일반 카메라로 촬영된 비디오에서 정확한 판정을 하기 어려울 때가 빈번히 발생한다. 초고속 카메라로 촬영한 슬로우 모션 비디오를 이용할 수 있다면 판정의 정확성을 향상시킬 수 있을 것이다. 본 논문에서는 일반 카메라로 촬영한 비디오로부터 마치 초고속 카메라로 촬영한 것과 같은 슬로우 모션 비디오를 생성하여 제공하는 서비스를 제안한다. 제안 방법은 NVIDIA에서 개발한 Super Slomo 기술을 기반으로, 초당 30장의 표준 비디오를 초당 60장에서 240장까지의 고품질 슬로우 모션 비디오로 변환한다. 이 기술은 시간적으로 이웃한 두 영상을 입력하여 딥 러닝 기반으로 중간 프레임을 보간함으로써 프레임율을 향상시킨다. 또한 본 논문에서는 Super Slomo 기술에 FP16을 적용하여 처리속도를 향상 시켰으며, 웹 서버를 이용하여 비디오를 업로드하고 슬로우 모션으로 변환된 비디오를 다운로드 할 수 있는 사이트를 구현했다.

  • PDF

머신러닝 기반 낙상 인식 알고리즘 (Fall Detection Algorithm Based on Machine Learning)

  • 정준현;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.226-228
    • /
    • 2021
  • 구글사에서 출시된 ML Kit API의 Pose detection를 사용한 영상기반 낙상 알고리즘을 제안한다. Pose detection 알고리듬을 사용하여 추출된 신체의 33개의 3차원 특징점을 활용하여 낙상을 인식한다. 추출된 특징점을 분석하여 낙상을 인식하는 알고리듬은 k-NN을 사용한다. 영상의 크기와 영상내의 인체의 크기에 영향을 받지 않도록 정규화과정을 거치며 특징점들의 상대적인 움직임을 분석하여 낙상을 인식한다. 본 실험을 위해 사용한 13개의 테스트 영상중 13개의 영상에서 낙상을 인식하여 100%의 성공률을 보였다.

  • PDF

메타버스 보안 강화를 위한 동작 기반 사용자 인증 (Motion-Based User Authentication for Enhanced Metaverse Security)

  • 박성규;류권상
    • 정보보호학회논문지
    • /
    • 제34권3호
    • /
    • pp.493-503
    • /
    • 2024
  • 본 논문에서는 메타버스 환경 내에서의 사용자 지속 인증 문제에 대해 다룬다. 최근 메타버스는 개인의 상호작용, 엔터테인먼트, 교육 및 비즈니스 분야에서 중요한 역할을 하고 있으며, 특히 사용자 신원 확인과 관련된 취약점이 주요한 문제로 인식되고 있다. 본 연구는 자세 추정 모델로 메타버스 환경의 캐릭터 움직임을 추출하고 분석하여 사용자의 신원을 확인하는 새로운 방법을 제안한다. 이 방법은 영상 데이터만을 이용하여 사용자를 인증하기 때문에 제한적인 환경에서도 활용할 수 있으며, 다양한 실험을 통해 캐릭터의 움직임이 사용자 식별에 어떻게 기여할 수 있는지를 분석한다. 또한, 이 접근 방식의 다른 디지털 플랫폼으로의 확장 가능성을 탐구한다. 이러한 연구는 메타버스 환경 내에서의 보안 강화와 사용자 신원 확인 방식의 혁신에 중요한 기여할 것으로 기대된다.

Management Architecture With Multi-modal Ensemble AI Models for Worker Safety

  • Dongyeop Lee;Daesik, Lim;Jongseok Park;Soojeong Woo;Youngho Moon;Aesol Jung
    • Safety and Health at Work
    • /
    • 제15권3호
    • /
    • pp.373-378
    • /
    • 2024
  • Introduction: Following the Republic of Korea electric power industry site-specific safety management system, this paper proposes a novel safety autonomous platform (SAP) architecture that can automatically and precisely manage on-site safety through ensemble artificial intelligence (AI) models. The ensemble AI model was generated from video information and worker's biometric information as learning data and the estimation results of this model are based on standard operating procedures of the workplace and safety rules. Methods: The ensemble AI model is designed and implemented by the Hadoop ecosystem with Kafka/NiFi, Spark/Hive, HUE, and ELK (Elasticsearch, Logstash, Kibana). Results: The functional evaluation shows that the main function of this SAP architecture was operated successfully. Discussion: The proposed model is confirmed to work well with safety mobility gateways to provide some safety applications.

HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계 (Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm)

  • 전필한;박찬준;김진율;오성권
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.682-691
    • /
    • 2017
  • In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.

거래 비용 절감을 위한 블록체인 기반 재능거래 플랫폼 (Implementation of a Blockchain-based Talent Trading Platform to Reduce Transaction Costs)

  • 양성훈;진회용;김상균
    • 방송공학회논문지
    • /
    • 제25권6호
    • /
    • pp.922-934
    • /
    • 2020
  • 재능거래 플랫폼은 프로그램 코딩이나 미디어 콘텐츠 제작(동영상, 음악, 발표자료 등), 디자인, 학습, 수리 등의 거래를 중개하는 플랫폼이다. 기존 재능거래 플랫폼은 서버-클라이언트 모델 기반의 서비스를 제공하여, 서버를 운영하는 비용과 거래에 대한 중재 인건비가 발생하여 이용자들이 높은 서비스 수수료를 부담하는 단점이 있다. 본 논문은 이더리움 플랫폼 기반 분산앱(dApp)으로 시스템을 통해 거래 정보를 블록에 올려 서버 및 데이터베이스 운영 비용을 절감하는 방법을 제안한다. 아울러 스마트콘트랙트를 통해 거래 중재자 인건비를 절감하여 거래수수료를 낮추는 방법을 제안한다. 블록체인 기반 재능거래 플랫폼과 기존 재능거래 플랫폼의 비용 처리 절차 및 거래수수료의 크기를 비교 분석한다.