• Title/Summary/Keyword: Video sensor

Search Result 320, Processing Time 0.04 seconds

Imaging Device Identification using Sensor Pattern Noise Based on Wiener Filtering (Wiener 필터링에 기반하는 센서 패턴 노이즈를 활용한 영상 장치 식별 기술 연구)

  • Lee, Hae-Yeoun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2153-2158
    • /
    • 2016
  • Multimedia such as image, audio, and video is easy to create and distribute with the advance of IT. Since novice uses them for illegal purposes, multimedia forensics are required to protect contents and block illegal usage. This paper presents a multimedia forensic algorithm for video to identify the device used for acquiring unknown video files. First, the way to calculate a sensor pattern noise using Wiener filter (W-SPN) is presented, which comes from the imperfection of photon detectors against light. Then, the way to identify the device is explained after estimating W-SPNs from the reference device and the unknown video. For the experiment, 30 devices including DSLR, compact camera, smartphone, and camcorder are tested and analyzed quantitatively. Based on the results, the presented algorithm can achieve the 96.0% identification accuracy.

Energy-Aware Video Coding Selection for Solar-Powered Wireless Video Sensor Networks

  • Yi, Jun Min;Noh, Dong Kun;Yoon, Ikjune
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.101-108
    • /
    • 2017
  • A wireless image sensor node collecting image data for environmental monitoring or surveillance requires a large amount of energy to transmit the huge amount of video data. Even though solar energy can be used to overcome the energy constraint, since the collected energy is also limited, an efficient energy management scheme for transmitting a large amount of video data is needed. In this paper, we propose a method to reduce the number of blackout nodes and increase the amount of gathered data by selecting an appropriate video coding method according to the energy condition of the node in a solar-powered wireless video sensor network. This scheme allocates the amount of energy that can be used over time in order to seamlessly collect data regardless of night or day, and selects a high compression coding method when the allocated energy is large and a low compression coding when the quota is low. Thereby, it reduces the blackout of the relay node and increases the amount of data obtained at the sink node by allowing the data to be transmitted continuously. Also, if the energy is lower than operating normaly, the frame rate is adjusted to prevent the energy exhaustion of nodes. Simulation results show that the proposed scheme suppresses the energy exhaustion of the relay node and collects more data than other schemes.

Rotational Wireless Video Sensor Networks with Obstacle Avoidance Capability for Improving Disaster Area Coverage

  • Bendimerad, Nawel;Kechar, Bouabdellah
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.509-527
    • /
    • 2015
  • Wireless Video Sensor Networks (WVSNs) have become a leading solution in many important applications, such as disaster recovery. By using WVSNs in disaster scenarios, the main goal is achieving a successful immediate response including search, location, and rescue operations. The achievement of such an objective in the presence of obstacles and the risk of sensor damage being caused by disasters is a challenging task. In this paper, we propose a fault tolerance model of WVSN for efficient post-disaster management in order to assist rescue and preparedness operations. To get an overview of the monitored area, we used video sensors with a rotation capability that enables them to switch to the best direction for getting better multimedia coverage of the disaster area, while minimizing the effect of occlusions. By constructing different cover sets based on the field of view redundancy, we can provide a robust fault tolerance to the network. We demonstrate by simulating the benefits of our proposal in terms of reliability and high coverage.

Design of Multi Sensor based on Context-aware System for Effective Video Information Acquisition (효율적인 영상정보 획득을 위한 멀티 센서 기반의 상황인지 시스템 설계)

  • Jeon, Min-Ho;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.901-904
    • /
    • 2012
  • In this paper, we proposed the context-aware system which can estimate the information on the objects and transmit video information by utilizing multi-sensors. The proposed system is to reduce the excessive video information from a system capturing videos outdoor. This system uses the human-detect sensor attached on the multi-sensor board and four ultrasonic sensor to measure the object's size and movement speed, to recognize the human body's information, and finally to send videos. In order to assess the performance of the context-aware system based on the multi sensor, a comparison has been made between video system and human-detect sensor. As a result, The body human-detect sensor had more reliable images and transmitted information more effectively than when the images were sent by server without sensors attached.

  • PDF

Prioritized Multipath Video Forwarding in WSN

  • Asad Zaidi, Syed Muhammad;Jung, Jieun;Song, Byunghun
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.176-192
    • /
    • 2014
  • The realization of Wireless Multimedia Sensor Networks (WMSNs) has been fostered by the availability of low cost and low power CMOS devices. However, the transmission of bulk video data requires adequate bandwidth, which cannot be promised by single path communication on an intrinsically low resourced sensor network. Moreover, the distortion or artifacts in the video data and the adherence to delay threshold adds to the challenge. In this paper, we propose a two stage Quality of Service (QoS) guaranteeing scheme called Prioritized Multipath WMSN (PMW) for transmitting H.264 encoded video. Multipath selection based on QoS metrics is done in the first stage, while the second stage further prioritizes the paths for sending H.264 encoded video frames on the best available path. PMW uses two composite metrics that are comprised of hop-count, path energy, BER, and end-to-end delay. A color-coded assisted network maintenance and failure recovery scheme has also been proposed using (a) smart greedy mode, (b) walking back mode, and (c) path switchover. Moreover, feedback controlled adaptive video encoding can smartly tune the encoding parameters based on the perceived video quality. Computer simulation using OPNET validates that the proposed scheme significantly outperforms the conventional approaches on human eye perception and delay.

A DSP Circuit Design on Improvement of Video Signal With High Sensotivity CCD Sensor Camera (고감도 CCD센서 카메라의 영상신호 성능향상을 위한 DSP 회로 설계)

  • Park, Jae-Chul;Kim, Yong-Deak
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.331-332
    • /
    • 2007
  • This Paper deals with the high sensitive camera circuit design, which is more sensitive than those on the market now in a way that it got rid of chronic smearing problem in CCD sensor and other kinds of noises in video signal effectively. This paper focused on the principle of CCD and video signal process and analyzed the specialized technique of industry and fundamental high sensitivity of CCTV camera. 1 also looked into the SONY super-HAD CCD camera which is very popular in the field now and compared this with the SONY EXview CCD camera to analyze the picture improvement using video test equipment. For the result, it had 190mv on camera sensitivity, 14dB on smearing, and 2dB on signal to noise ratio.

  • PDF

Displacement Measurement of Multi-Point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.675-680
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When displacement is measure by using camera images, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.

  • PDF

Displacement Measurement of Multi-point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1256-1261
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When multi-point is measure by using a pattern recognition, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.

Lifetime Maximization of Wireless Video Sensor Network Node by Dynamically Resizing Communication Buffer

  • Choi, Kang-Woo;Yi, Kang;Kyung, Chong Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5149-5167
    • /
    • 2017
  • Reducing energy consumption in a wireless video sensor network (WVSN) is a crucial problem because of the high video data volume and severe energy constraints of battery-powered WVSN nodes. In this paper, we present an adaptive dynamic resizing approach for a SRAM communication buffer in a WVSN node in order to reduce the energy consumption and thereby, to maximize the lifetime of the WVSN nodes. To reduce the power consumption of the communication part, which is typically the most energy-consuming component in the WVSN nodes, the radio needs to remain turned off during the data buffer-filling period as well as idle period. As the radio ON/OFF transition incurs extra energy consumption, we need to reduce the ON/OFF transition frequency, which requires a large-sized buffer. However, a large-sized SRAM buffer results in more energy consumption because SRAM power consumption is proportional to the memory size. We can dynamically adjust any active buffer memory size by utilizing a power-gating technique to reflect the optimal control on the buffer size. This paper aims at finding the optimal buffer size, based on the trade-off between the respective energy consumption ratios of the communication buffer and the radio part, respectively. We derive a formula showing the relationship between control variables, including active buffer size and total energy consumption, to mathematically determine the optimal buffer size for any given conditions to minimize total energy consumption. Simulation results show that the overall energy reduction, using our approach, is up to 40.48% (26.96% on average) compared to the conventional wireless communication scheme. In addition, the lifetime of the WVSN node has been extended by 22.17% on average, compared to the existing approaches.

Video Ranking Model: a Data-Mining Solution with the Understood User Engagement

  • Chen, Yongyu;Chen, Jianxin;Zhou, Liang;Yan, Ying;Huang, Ruochen;Zhang, Wei
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 2014
  • Nowadays as video services grow rapidly, it is important for the service providers to provide customized services. Video ranking plays a key role for the service providers to attract the subscribers. In this paper we propose a weekly video ranking mechanism based on the quantified user engagement. The traditional QoE ranking mechanism is relatively subjective and usually is accomplished by grading, while QoS is relatively objective and is accomplished by analyzing the quality metrics. The goal of this paper is to establish a ranking mechanism which combines the both advantages of QoS and QoE according to the third-party data collection platform. We use data mining method to classify and analyze the collected data. In order to apply into the actual situation, we first group the videos and then use the regression tree and the decision tree (CART) to narrow down the number of them to a reasonable scale. After that we introduce the analytic hierarchy process (AHP) model and use Elo rating system to improve the fairness of our system. Questionnaire results verify that the proposed solution not only simplifies the computation but also increases the credibility of the system.

  • PDF