• Title/Summary/Keyword: Video length

Search Result 308, Processing Time 0.035 seconds

Nasotracheal intubation in pediatrics: a narrative review

  • Jieun Kim;Sooyoung Jeon
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.2
    • /
    • pp.81-90
    • /
    • 2024
  • Nasotracheal intubation (NTI) plays an important role in pediatric airway management, offering advantages in specific situations, such as oral and maxillofacial surgery and situations requiring stable tube positioning. However, compared to adults, NTI in children presents unique challenges owing to anatomical differences and limited space. This limited space, in combination with a large tongue and short mandible, along with large tonsils and adenoids, can complicate intubation. Owing to the short tracheal length in pediatric patients, it is crucial to place the tube at the correct depth to prevent it from being displaced due to neck movements, and causing injury to the glottis. The equipment used for NTI includes different tube types, direct laryngoscopy vs. video laryngoscopy, and fiberoptic bronchoscopy. Considering pediatric anatomy, the advantages of video laryngoscopy have been questioned. Studies comparing different techniques have provided insights into their efficacy. Determining the appropriate size and depth of nasotracheal tubes for pediatric patients remains a challenge. Various formulas based on age, weight, and height have been explored, including the recommendation of depth-mark-based NTI. This review provides a comprehensive overview of NTI in pediatric patients, including the relevant anatomy, equipment, clinical judgment, and possible complications.

Camera Self-Calibration from Two Ellipse Contours in Pipes

  • Jeong, Kyung-Min;Seo, Yong-Chil;Choi, Young-Soo;Cho, Jai-Wan;Lee, Sung-Uk;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1516-1519
    • /
    • 2004
  • A tele-operated robot should be used to maintain and inspect nuclear power plants to reduce the radiation exposure to the human operators. During an overhaul of the nuclear power plants in Korea, a ROV(Remotely Operated Vehicle) may enter a cold-leg connected to the reactor to examine the state of the thermal sleeve and it's position in the safety injection nozzle. To measure the positions of the thermal sleeve or scratches from the video images captured during the examination, the camera parameters should be identified. However, the focal length of the CCD camera could be increased to a close up of the target and the aspect ratio and the center of the image could also be varied with capturing devices. So, it is desired to self-calibrated the intrinsic parameters of the camera and capturing device with the video images captured during the examination. In the video image of the safety injection nozzle, two or more circular grooves around the nozzle are shown as ellipse contours. In this paper, we propose a camera self-calibration method using a single image containing two circular grooves which are the greatest circles of the cylindrical nozzle whose radius and distance are known.

  • PDF

Remote Sensing of Wave Trajectory in Surf Zone using Oblique Digital Videos (해안 디지털 비디오를 이용한 쇄파지역에서의 파랑궤적 측정)

  • Yoo, Je-Seon;Shin, Dong-Min;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.333-341
    • /
    • 2008
  • A remote sensing technique to identify trajectories of breaking waves in the surf zone using oblique digital nearshore videos is proposed. The noise arising from white foam induced by wave breaking has hindered accurate remote sensing of wave properties in the surf zone. For this reason, this paper focuses on image processing to remove the noise and wave trajectory identification essential for wave property estimation. The nearshore video imagery sampled at 3 Hz are used, covering length scale(100 m). Original image sequences are processed through image frame differencing and directional low-pass image filtering to remove the noise characterized by high frequencies in the video imagery. The extraction of individual wave crest features is conducted using a Radon transform-based line detection algorithm in the processed cross-shore image timestacks having a two-dimensional space-time domain. The number of valid wave crest trajectories identified corresponds to about 2/3 of waves recorded by the in-situ sensors.

Development of Fracture Toughness Evaluation Method for Composite Materials by Non-Destructive Testing Method (비파괴검사법을 이용한 복합재료의 파괴인성 평가법 개발)

  • Lee, Y.T.;Kim, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.278-291
    • /
    • 1998
  • Fracture process of continuous fiber reinforced composites is very complex because various fracture mechanisms such as matrix cracking, debonding, delamination and fiber breaking occur simultaneously during crack growth. If fibers cause crack bridging during crack growth, the stable crack growth and unstable crack growth appear repeatedly. Therefore, it is very difficult to exactly determine tile starting point of crack growth and the fracture toughness at the critical crack length in composites. In this research, fracture toughness test for CFRP was accomplished by using acoustic emission(AE) and recording of tile fracture process in real time by video-microscope. The starting point of crack growth, pop-in point and the point of unstable crack growth can be exactly determined. Each fracture mechanism can be classified by analyzing the fracture process through AE and video-microscope. The more reliable method ior the fracture toughness measurement of composite materials was proposed by using the combination of R-curve method, AE and video microscope.

  • PDF

Development of Vision-Based Vehicle Tracking for Extracting Microscopic Traffic Information (미시적 교통정보자료의 취득을 위한 영상기반 차량추적기술 개발)

  • Lee, Ki-Young;Chang, Myung-Soon
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.137-148
    • /
    • 2005
  • The position information of individual vehicles on a road at every time instant can be used to analyze the microscopic behaviors of driving of each vehicle. The limited information obtained from previous imaging technology such as traffic volume and interval velocity cannot be used to explore such microscopic traffic conditions. Also, information gathering for the microscopic behaviors by manual analysis of captured video takes large amount of time and man-power. In the paper we develop the rule-based vehicle tracking technology from which the position information of individual vehicles on a road at every time instant can be automatically obtained. Also, we extract the position data of driving vehicles on a road, length of 130m for every 0.05 second, and calculate the velocity of each traced vehicles to compare with the real velocity for the verification of accuracy. In the future, this type of tracking techniques based on video analysis can be widely used to provide the practically important information of road traffic conditions and to analyze the academically important microscopic behaviors of driving patterns.

Feasibility and Safety of Single-Port Video-Assisted Thoracic Surgery for Primary Lung Cancer

  • Heo, Woon;Kang, Do Kyun;Min, Ho-ki;Jun, Hee Jae;Hwang, Youn-Ho
    • Journal of Chest Surgery
    • /
    • v.50 no.3
    • /
    • pp.190-196
    • /
    • 2017
  • Background: The feasibility of single-port video-assisted thoracic surgery (SPVATS) for primary lung cancer is not well understood. In this study, we compared SP and multi-port (MP) VATS for the surgical treatment of patients with primary lung cancer. Methods: Surgical treatment was performed in 181 patients with primary lung cancer at Inje University Haeundae Paik Hospital between June 2012 and December 2015. A propensity-matched analysis was used to compare the postoperative outcomes and to evaluate the comparative feasibility and safety of SPVATS and MPVATS. Results: There were 37 patients in the SPVATS group and 67 patients in the MPVATS group. Propensity matching produced 32 pairs. The operation time (210 minutes versus 200 minutes, p=0.11), volume of the estimated blood loss (170 mL versus 160 mL, p=0.19), duration of chest tube drainage (5 days versus 6 days, p=0.66), and length of hospital stay (9 days versus 10 days, p=0.89) were similar between the 2 groups. Conclusion: In our study, SPVATS for primary lung cancer was safe and feasible in well selected patients. A prospective, randomized study with a large group and long-term follow-up is necessary to evaluate the clinical feasibility and the advantages of SPVATS for primary lung cancer.

Traffic Information Extraction Using Image Processing Techniques (처리 기술을 이용한 교통 정보 추출)

  • Kim Joon-Cheol;Lee Joon-Whan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.75-84
    • /
    • 2003
  • Current techniques for road-traffic monitoring rely on sensors which have limited capabilities, are costly and disruptive to install. The use of video cameras coupled with computer vision techniques offers an attractive alternative to current sensors. Video based traffic monitoring systems are now being considered key points of advanced traffic management systems. In this paper, we propose the new method which extract the traffic information using video camera. The proposed method uses an adaptive updating scheme for background in order to reduce the false alarm rate due to various noises in images. also, the proposed extraction method of traffic information calculates the traffic volume ratio of vehicles passing through predefined detection area, which is defined by the length of profile occupied by cars over that of overall detection area. Then the ratio is used to define 8 different states of traffic and to interpret the state of vehicle flows. The proposed method is verified by an experiment using CCTV traffic data from urban area.

  • PDF

Growth and Decay of Alpha Tracks in a Large Scale Cloud Chamber after Injection of Radon

  • Wada, Shinichi;Kobayashi, Tsuneo;Katayama, Yoshiro;Iwami, Toshiaki;Kato, Tsuguhisa;Cameron, John R.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.275-278
    • /
    • 2002
  • The recognition of the natural background radiation is important not only for radiological education but also for the promotion of people's scientific view about radiation. We made a "room" on the web showing natural background radiation as part of a VRM (Virtual Radiation Museum). The "room" shows the video images of the tracks of charged particles from natural background radiation, alpha and beta ray track from known sources using a Large Scale Diffusion Cloud Chamber. The purpose of this study is to make clear the origin of a kind of track (named A-track) which is thick and easy to recognize with the length less than several cm in the cloud chamber, and to make numerical explanation of its counting rate. The study was carried out using a Large Scale Diffusion Cloud Chamber (Phywe, Germany) installed in the Niigata Science Museum. The Model RNC (Pylon Electronics, Canada) was used as Rn-222 source. Ra-226 activity in RNC was 111.6 Bq calibrated with NIST protocol. Rn-222 gas was injected into the cloud chamber. Continuous video recording with use of Digital Handycam (SONY, Japan) was carried out for 360 min. after injection of Rn-222 gas. The number of alpha-ray track (alpha track) in the video images was analyzed. The growth and decay curve of the total activity of Rn-222 and its alpha emitting progeny were calculated and compared with the count of the alpha tracks. As a result the alpha tracks formed by Rn-222 injection resemble A-Tracks. The relationship between A-track in the cloud chamber and atmospheric Rn is discussed.

  • PDF

Moving Object Extraction and Relative Depth Estimation of Backgrould regions in Video Sequences (동영상에서 물체의 추출과 배경영역의 상대적인 깊이 추정)

  • Park Young-Min;Chang Chu-Seok
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.247-256
    • /
    • 2005
  • One of the classic research problems in computer vision is that of stereo, i.e., the reconstruction of three dimensional shape from two or more images. This paper deals with the problem of extracting depth information of non-rigid dynamic 3D scenes from general 2D video sequences taken by monocular camera, such as movies, documentaries, and dramas. Depth of the blocks are extracted from the resultant block motions throughout following two steps: (i) calculation of global parameters concerned with camera translations and focal length using the locations of blocks and their motions, (ii) calculation of each block depth relative to average image depth using the global parameters and the location of the block and its motion, Both singular and non-singular cases are experimented with various video sequences. The resultant relative depths and ego-motion object shapes are virtually identical to human vision.

Surveillance Video Summarization System based on Multi-person Tracking Status (다수 사람 추적상태에 따른 감시영상 요약 시스템)

  • Yoo, Ju Hee;Lee, Kyoung Mi
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.2
    • /
    • pp.61-68
    • /
    • 2016
  • Surveillance cameras have been installed in many places because security and safety has become an important issue in modern society. However, watching surveillance videos and judging accidental situations is very labor-intensive and time-consuming. So now, requests for research to automatically analyze the surveillance videos is growing. In this paper, we propose a surveillance system to track multiple persons in videos and to summarize the videos based on tracking information. The proposed surveillance summarization system applies an adaptive illumination correction, subtracts the background, detects multiple persons, tracks the persons, and saves their tracking information in a database. The tracking information includes tracking one's path, their movement status, length of staying time at the location, enterance/exit times, and so on. The movement status is classified into six statuses(Enter, Stay, Slow, Normal, Fast, and Exit). This proposed summarization system provides a person's status as a graph in time and space and helps to quickly determine the status of the tracked person.