본 논문에서는 카메라로부터 획득 되어진 비디오 시퀀스로부터 다중 움직임 객체와 배경을 분할하고 시공간 정보에 기반 한 객체 추적 방법을 제안한다. 제안한 방법은 3단계로 구성되어 있다. 먼저 입력 비디오 시퀀스로부터 프레임 사이의 차를 이용한 움직임 영역과 움직임이 존재하지 않는 영역을 구분하여 적응적 경계간을 추출한다. 두 번째는 참조 배경영상과 적응적 경계값을 이용하여 움직임이 존재하는 영역으로부터 개략적 객체 분할을 수행하며, 분할된 이진영상에 형태학적 영역 병합 알고리즘을 적용하여 객체 병합을 수행하였다. 마지막으로 분할된 객체에 시공간 정보를 이용하여 객체에 임의의 ID를 할당하여 추적하였다. 카메라로부터 획득되어진 비디오 시퀀스를 이용한 실험에서 객체들의 분할 및 추적의 효율성과 시스템의 유용성을 확인하였다.
야간 중대형 산불의 전체적인 화선정보를 얻기 위하여 누락되는 산불에 대한 반복적인 임무비행과 임무수행 종료 후 획득되는 정사영상 정합에 대한 소요시간을 줄이기 위하여 실시간 동영상으로 산불발생 여부를 판단하고 드론의 위치와 영상카메라의 각도정보, 지도상의 고도정보를 활용하여 판단된 산불위치를 계산하여 지도에 도시할 수 있는 지상통제시스템을 개발하였다. 개발된 기능의 신뢰성을 검증하기 위하여 비행고도 별, 영상카메라의 지향하는 위치정보의 오차거리를 측정하였으며, 신뢰할 수 있는 범위내의 위치정보를 지도에 표시하였다. 본 논문에 개발된 기능으로 다수의 산불 발생위치를 실시간 식별이 가능하므로 산불 진화대책 수립을 위한 전체적인 화선정보를 보다 신속하게 획득할 수 있을 것으로 예상된다.
The objective of this research is to devise a BARS evaluation system as a performance evaluation plan for non-face-to-face capstone design and to verify the validity through the expert FGI as the remote education is highlighted as a new normal standard in the post corona epoch. The conclusion of this research is as follows. First, the non-face-to-face capstone design is a competency centered subject that allows you to develop the engineering and majoring knowledge and its function and attitude, and the achievement of program outcome is the objective competency, and the researcher proposes the BARS method evaluation, one of competency evaluation method, as a new performance evaluation plan. Second, for the evaluation of PO achievement of non-face-to-face capstone design, the researcher deduced 20 behavior identification standard(anchor) of BARS evaluation system, and developed the achievement standard per 4 levels. Third, as the evaluation tool of non-face-to-face capstone design, the presentation data(PPT), presentation video, product such as trial product(model), non-face-to-face class participation video, discussion participating video, team activity report, and result report for the evidential data of BARS evaluation were appeared as proper. Finally, the BARS evaluation plan of non-face-to-face capstone design would be efficiently made through the establishment of evaluation plan, the establishment of grading standard of BARS evaluation scale, the determination of evaluation subject and online BARS evaluation site.
This paper describes a method for vision-based person identification that can detect, track, and recognize person from video using multiple cues: height and dressing colors. The method does not require constrained target's pose or fully frontal face image to identify the person. First, the system, which is connected to a pan-tilt-zoom camera, detects target using motion detection and human cardboard model. The system keeps tracking the moving target while it is trying to identify whether it is a human and identify who it is among the registered persons in the database. To segment the moving target from the background scene, we employ a version of background subtraction technique and some spatial filtering. Once the target is segmented, we then align the target with the generic human cardboard model to verify whether the detected target is a human. If the target is identified as a human, the card board model is also used to segment the body parts to obtain some salient features such as head, torso, and legs. The whole body silhouette is also analyzed to obtain the target's shape information such as height and slimness. We then use these multiple cues (at present, we uses shirt color, trousers color, and body height) to recognize the target using a supervised self-organization process. We preliminary tested the system on a set of 5 subjects with multiple clothes. The recognition rate is 100% if the person is wearing the clothes that were learned before. In case a person wears new dresses the system fail to identify. This means height is not enough to classify persons. We plan to extend the work by adding more cues such as skin color, and face recognition by utilizing the zoom capability of the camera to obtain high resolution view of face; then, evaluate the system with more subjects.
본 논문은 트래픽 정보취득을 위하여 영상의 라인 샘플링을 이용한 고속이동물체 속도 측정 알고리즘을 제안하였다. 이동물체의 트래픽 정보 취득을 위한 속도 측정은 도로에 제 1 샘플라인과 제 2 샘플라인을 설정해 놓고, 물체가 샘플라인을 통과할 때 취득된 영상의 시변환 색조 데이터와 기준영상 색조 데이터 사이에서 차영상 기법으로 자동차를 검출하고, 자동차가 두 샘플라인 사이에 거리를 통과할 때 점유하는 프레임수로 속도를 측정하였다. 제 1 샘플라인과 제 2 샘플라인에서 각각 검출된 자동차의 색조로 동일성 판별을 하였다. 제안된 방법의 타당성을 검토하기 위하여 주행하는 자동차를 대상으로 동일성 판별 및 속도 측정을 한 결과, 동일성 판별은 두 개의 샘플링 라인을 통과하는 자동차의 색조 데이터로 판별됨을 보였고, 자동차의 속도 측정은 X-밴드 속도 측정 시스템과 비교한 결과 3% 이내임을 보였다.
Rumination in cattle is closely related to their health, which makes the automatic monitoring of rumination an important part of smart pasture operations. However, manual monitoring of cattle rumination is laborious and wearable sensors are often harmful to animals. Thus, we propose a computer vision-based method to automatically identify multi-object cattle rumination, and to calculate the rumination time and number of chews for each cow. The heads of the cattle in the video were initially tracked with a multi-object tracking algorithm, which combined the You Only Look Once (YOLO) algorithm with the kernelized correlation filter (KCF). Images of the head of each cow were saved at a fixed size, and numbered. Then, a rumination recognition algorithm was constructed with parameters obtained using the frame difference method, and rumination time and number of chews were calculated. The rumination recognition algorithm was used to analyze the head image of each cow to automatically detect multi-object cattle rumination. To verify the feasibility of this method, the algorithm was tested on multi-object cattle rumination videos, and the results were compared with the results produced by human observation. The experimental results showed that the average error in rumination time was 5.902% and the average error in the number of chews was 8.126%. The rumination identification and calculation of rumination information only need to be performed by computers automatically with no manual intervention. It could provide a new contactless rumination identification method for multi-cattle, which provided technical support for smart pasture.
최근 공중 전투체계 기술들이 발전함에 따라 대공방어 시스템의 발전이 요구되고 있다. 대공 방어 시스템의 운용개념에 있어, 표적에 적합한 무장을 선택하는 것은 제한된 대공 전력을 사용하여 위협체에 대해 효율적으로 대응한다는 측면에서 체계에 요구되는 능력 중 하나이다. 비행 위협체의 식별에 있어 많은 부분이 운용자의 육안 식별에 의존하는데 고속으로 기동하고 원거리에 위치한 비행체를 육안으로 판별하는 것은 많은 한계가 있다. 뿐만 아니라, 현대 전장에서 무인화 및 지능화된 무기체계의 수요가 증가함에 따라 운용자의 육안 식별 대신 체계가 자동으로 비행체를 식별하고 분류하는 기술의 개발이 필수적이다. 영상자료를 수집해 딥러닝 기반의 모델을 이용하여 무기체계를 식별한 사례로는 전차와 함정 등이 있지만 비행체의 식별에 대한 연구는 아직 많이 부족한 상황이다. 따라서 본 논문에서는 합성곱 신경망 모델을 이용하여 전투기, 헬기, 드론을 분류하는 모델을 제시하고 제시하는 모델의 성능을 분석한다. 본 논문에서 제시하는 모델은 시험세트에 대해 95% 이상의 정확도를 보이고, precision 0.9579, recall 0.9558, F1-socre 0.9568의 값을 나타내는 것을 확인할 수 있다.
This paper deals with the development of RACOM(Radar Signal Detecting & Processing Computer). RACOM is a radar display system specially designed for radar scan conversion, signal processing and PCI radar image display. RACOM contains two components; i )RSP(Radar Signal Processor) board which is a PCI based board for receiving video, trigger, heading & bearing signals from radar scanner & tranceiver units and processing these signals to generate high resolution radar image, and ⅱ)Applications which perform ordinary radar display functions such as EBL, VRM and so on. Since RACOM is designed to meet a wide variety of specifications(type of output signal from tranceiver unit), to record radar images and to distribute those images in real time to everywhere in a networked environment, it can be applicable to AIS(Automatic Identification System) and VDR(Voyage Data Recorder).
Face recognition presents a challenging problem in the field of image analysis and computer vision, and as such has received a great deal of attention over the last few years because of its many applications in various domains. Face recognition techniques can be broadly divided into three categories based on the face data acquisition methodology: methods that operate on intensity images; those that deal with video sequences; and those that require other sensory data such as 3D information or infra-red imagery. In this paper, an overview of some of the well-known methods in each of these categories is provided and some of the benefits and drawbacks of the schemes mentioned therein are examined. Furthermore, a discussion outlining the incentive for using face recognition, the applications of this technology, and some of the difficulties plaguing current systems with regard to this task has also been provided. This paper also mentions some of the most recent algorithms developed for this purpose and attempts to give an idea of the state of the art of face recognition technology.
In recent years, there has been increasing use of automatic surveillance and monitoring systems based on vision sensors. Humans are often the most important target in the systems, but processing human images is difficult due to the small sizes and flexible motions. Particularly, occlusion among pedestrians in camera images brings practical problems. In this paper, we propose a novel method to separate image regions of occluded pedestrians. A camera equipped with a wide angle lens is attached to the ceiling of a building corridor for sensing pedestrians with a wide field of view. The output images of the camera are processed for the human detection, tracking, identification, distortion correction, and occlusion handling. We resolve the occlusion problem adaptively depending on the angles and positions of their heads. Experimental results showed that the proposed method is more efficient and accurate compared with existing methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.