• Title/Summary/Keyword: Victors hardness

Search Result 35, Processing Time 0.023 seconds

Effect of Hardness and Substructure on Long-term Creep Behavior of Mod.9Cr-1Mo Steel (개량 9Cr-1Mo 강의 장시간 크리프거동에 미치는 경도와 하부조직의 영향)

  • 박규섭;이근진;정한식;김정호;정영관;엔도타카오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.168-176
    • /
    • 2004
  • Interrupted creep tests were carried out on the Mod.9Cr-1Mo steel in order to investigate the structural degradation during creep. The ranges of creep stress and temperature were from 71 to 167MPa and 873 to 923k, respectively. The change of hardness and tempered martensitic lath width were measured in the grip and gauge parts of interrupted specimens. The lath structure was thermally stable in static conditions, but was not stable during creep, and the structural evolution was enhanced by creep strain. The relation between the change in lath width and strain was described in the from, $\delta$W= a ($W_s-W_o$)$cdot;varepsilon$, where $\varepsilon$ is the strain, $W_o$is the initial lath width, $W_s$ is the final lath width depending solely on stress, and a is the constant of the magnitude of 0.67 $\mu$m /strain. The change in Victors hardness was expressed by a one-valued function of creep life consumption ratio. Based on the empirical relation between strain and lath width, a model was proposed to explain the relation between change in hardness and creep life consumption ratio. The model revealed that about 65$%$ of dislocations in lath structures were eliminated by the migration of subboundaries.

Microstructure and mechanical properties of Nd:YAG Laser welded AZ31-H24 Magnesium alloy using AZ61 filler metal (AZ61 filler wire를 사용하여 Nd:YAG Laser 용접한 AZ31-H24합금의 미세조직과 기계적 특성)

  • Ryu, Chung-Seon;Lee, Mok-Yeong;Bang, Guk-Su;Jang, Ung-Seong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.322-324
    • /
    • 2007
  • Nd:YAG laser welding of AZ31B-H24 magnesium alloy was carried out using AZ61 filler wire(Mg-6wt%Al-1wt%Zn). Microstructure and mechanical properties of welded joint were examined by optical microscopy, scanning electronic microscopy(SEM), energy dispersive spectroscopy(EDS), electron probe micro analyzer(EPMA) and victors hardness, tensile test at the room and elevated temperature. Test results indicate that the specimens welded with AZ61 filler wire have better tensile strength, elongation and victors hardness at room temperature than those of welded without filler wire. However tensile strength are similar but elongation are quite different at elevated temperature.

  • PDF

Densification Behavior of Mechanically Alloyed NiAl Powder Compact during Spark-plasma Sintering and its Mechanical Property

  • Kim, Ji-Soon;Jung, Soon-Ho;Jang, Young-Il;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.172-175
    • /
    • 2003
  • Mechanically-alloyed NiAl powder was sintered by Spark-Plasma Sintering (SPS) process. Densification and behavior mechanical property were determined from the experimental results and analysis ,such as changes in linear shrinkage, shrinkage rate, microstructure, and phase during sintering process, Victors hardness, and transver.ie-rupture-strength (TRS). Above 97% relative density was obtained after sintering at 115$0^{\circ}C$ for 5 min. Crystallite size determined by the Scherrer method was approximately 50 nm. From the X-ray diffraction analysis it was confirmed that the sintered bodies were composed mainly of NiAl phase together with Ni$_3$Al phase. Measured Vickers hardness and TRS value were 555$\pm$10 $H_v$ and 1393$\pm$75 MPa , respectively.

A Study on the Friction and Wear Characteristics of Contact Sealing Units for a Small Hydro-power Turbine Under Various Rubbing Conditions (마찰접촉조건에 따른 소수력 수차용 밀봉장치의 마찰.마멸특성 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.314-319
    • /
    • 2006
  • In this paper, the friction and wear characteristics of contact type sealing unit far a water turbine have been presented. The sealing unit for a small hydropower generation is to stop a leakage of circulating water from an outside of an impeller to an inside of a rolling bearing. The friction heating between a seal ring and a seal seat may radically increase a surface temperature in which increase a power loss and wear on the rubbing surface. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Victors hardness and the hardness of silicone carbide of SiC is 714.1 in Victors hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces are a dry friction, a water film friction and a mixed friction that is contaminated by a dust, silt, and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat in primary sealing unit. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components.

A Study on the Effect of Process Parameters to Mechanical Property in Forward Extrusion of Milli-size Cylindrical Pin (밀리 단위의 원형핀 전방압출에 있어서 공정인자가 기계적 성질에 미치는 영향 연구)

  • 심경섭;김용일;이용신;김종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.797-801
    • /
    • 2003
  • The mechanical properties such as shear strength and the hardness of milli-size products that manufactured for various process parameters by forward extrusion using square dies are investigated. Shear strength test is implemented for the observation of relation between vickers hardness and shear strength in the interface of head and shaft part of a stepped pin. When the extrusion ratios of pure aluminum and pure copper billets increase, the hardness on both the surface and the center line of a pin also increase, especially the hardness on the surface is shown to be a little higher than on the center. The existence of knock-out pad in extrusion die caused hardness increase in the interface of a extruded pin. As compared shear strength with hardness of a pin, the approximated linear relations are suggested in this study.

  • PDF

Effects of knock-out Pad and Extrusion Ratio on Mechanical Property Changes in Milli-Forward Extrusion of Cylindrical Pin (원형핀의 밀리 전방압출에서 녹아웃패드와 압출비가 기계적 성질 변화에 미치는 영향)

  • 심경섭;김용일;이용신;김종호
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.582-587
    • /
    • 2003
  • This paper is concerned with the mechanical property changes of the milli-size products manufactured by forward extrusion processes with square dies. Experiments are carried out with pure aluminum and pure copper billets. Extrusion ratio and knock-out pad are chosen as the important process parameters affecting the changes of mechanical properties such as shear strength and hardness. Shear strength tests with the extruded milli-size pin have shown the strong relation between victors hardness and shear strength in the neck of a stepped pin. As the extrusion ratio increases, the hardness on both the surface and the center line of a pin also increase. It is also noted that the hardness on the surface is a little higher than that on the center. The existence of knock-out pad in extrusion die causes the hardness in the neck of a extruded pin to increase. Finally, the approximated linear relations between shear strength and hardness of a pin are suggested.

AN EXPERIMENTAL STUDY ON PHYSICAL PROPERTIES OF WROUGHT WIRE CLASP (WROUGHT WIRE CLASP의 물리적 성질에 관한 실험적 연구)

  • Lee, Kwang-Hee;Chang, Ik-Tae;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.201-218
    • /
    • 1989
  • The purpose of this study was to evaluate the influence of attachment technique on mechanical properties and microstructures of wrought wires. The wires tested in this study were precious metal wires: PGP (Platinum-Gold -Palladium), Elastic #12, Denture Clasp, Standard, Jelenko No. 2, Degulor-Klammerdraht, DM (Dong Myung) and base metal wire : Ticonium. Each wire was divided into three groups, and each group was heat treated as embedding, cast to, and soldering state. Heat treated sample was evaluated by tensile test, bending test, microhardness test, element analysis and microstructure test. The obtained results were as follows: 1. In tensile test, cast to and soldering procedures have an effect on wrought wire clasp as hardening heat treatment. 2. Maximum bending strength was significantly increased in Elastic #12, Denture Clasp, Standard, and DM in cast to procedure. 3. Ticonium showed the highest Victors hardness number, followed by PGP, and there was no significant difference in other wrought wires. In cast to and soldering procedure, Victors hardness number was significantly increased in precious wrought wires. 4. The precious wrought wire showed typical fibrous structure and this was disappeared in cast to and soldering procedure. But physical properties were not influenced by this phenomenon.

  • PDF

A Study on the Die-casting Process of AM50 Magnesium Alloy (AM50 마그네슘 합금의 다이캐스팅 공정에 관한 연구)

  • Jang C. W.;Kim S. K.;Han S. H.;Seo Y. K.;Kang C. G.;Lee J. H.;Park J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.415-418
    • /
    • 2005
  • In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modem vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. Although Mg alloys are fulfilling the demands for low specific weight materials with excellent machining and casting abilities, they are still not used in die casting process to the same extent as the competing material aluminium. One of the reasons is that effects of various forming variables for die casting process is not closely examined from the viewpoint of die design. In this study, step die and flowability tests for AM60 were performed by die casting process according to various combination of casting pressure and plunger velocity. Microstructure and Victors hardness tests were examined and performed for each specimen to verify effects of forming conditions.

  • PDF

The Study of Dynamic Fracture Characteristics for Tempering Temperature of STD-11 (STD-11 합금공구강의 뜨임 온도에 따른 동적 파괴특성 연구)

  • 김선용
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.59-65
    • /
    • 1996
  • This study is to evaluate dynamic fracture characteristics of alloy tool steel, STD-11, according to various tempering conditions (heat treatment). The dynamic fracture initiation toughness and some of the dynamic fracturing characteristics were evaluated by using the instrumented Charpy impact testing procedures. The distributions of Victors hardness and dynamic fracture initiation toughness with respect to varying tempering temperatures are found to be symmetric type with the help of experimental results for the STD-11. It is also found that the dynamic fracture initiation toughness is a inverse proportion to Vickers hardness. In this experimental study, it is found that the best heat treatment condition is 55$0^{\circ}C$ tempering in alloy tool steel, STD-11, because the results show high values of Vickers hardness and dynamic fracture initiation toughness.

  • PDF

Ni-Co Alloy Electroforming for Micro Mold Fabrication (마이크로 금형 제작을 위한 니켈-코발트 합금 전주기술개발)

  • Shin S. H.;Jeong M. K.;Kim Y. S.;Han S. H.;Hur Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.276-279
    • /
    • 2004
  • The factors affecting Ni-Co alloy electroforming were investigated to determine the optimum bath composition and electroplating parameters, like pH, temperature, and current density, suitable for high speed fabrication of a micro mold with longer lifetime. To obtain alloy deposits having uniform thickness and composition, electroplating parameters were finely tuned with home-made electroforming apparatus. Ni-Co alloy deposits had linearly increased Co with $Co^{2+}$ ion concentration in electroplating bath, and showing $412H_v$ of Victors hardness at $23wt\%$ of Co content. For Ni-Co alloy, sulfonate and diol related organic additives were very effective to alleviate its residual stress and surface roughness. The maximum deposition rate was $106{\mu}m/hr$ at 10ASD and the tensile strength of alloy deposit was 2 times larger than that of Ni only case.

  • PDF