• Title/Summary/Keyword: Vickers hardness test

Search Result 236, Processing Time 0.023 seconds

Calculation of Jominy Hardenability Curve of Low Alloy Steels from TTT/CCT data (TTT/CCT 데이터를 이용한 저합금강의 죠미니 경화능 곡선 계산)

  • Jung, Minsu;Son, YoonHo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.1
    • /
    • pp.17-28
    • /
    • 2019
  • Jominy hardenability curves of low alloy steel containing less than 5 wt.% of alloying elements in total were calculated by applying Scheil's rule of additivity to pre-calculated isothermal transformation curve. Isothermal transformation curve for each phase in steel was approximated as a simple mathematical equation by using Kirkaldy's approach and all coefficients in the equation were estimated from experimental temperature-time-transformation (TTT) and/or continuous cooling transformation (CCT) data in the literature. Then jominy test with simple boundary conditions was performed in computer by applying the finite difference scheme. The resultant cooling curves at each location along a longitudinal direction of Jominy bar were applied to calculate phase fractions as well as mechanical properties such as micro Vickers hardness. The simulated results were compared with experimental CCT data and Jominy curves in the literature.

Fatigue Characteristic of HIPS(HR-1360) Materials (HIPS(HR-1360) 재료의 피로 특성 평가)

  • Park, Jae-Sil;Seok, Chang-Sung;Lee, Jong-Gyu;Lee, Jae-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.129-134
    • /
    • 2000
  • Recently, HIPS(High Impact Polystyrene) materials are spot-lighted as office equipment, home electronics, electronics appliances housing, packing containers, etc. But its using are occur to problem caused by fatigue fracture. However, its strength is larged affected by environmental conditions. So, in this paper it tried to analyze the effect of temperature by tensile test and fatigue test. It was observed that yield strength and ultimate strength, fatigue life of same stress decreased relatively with increase temperature. Further, this paper predict S-N curve using the result of tensile test and micro vickers hardness test. For this purpose, the management in the engineering department is able to design the fatigue life of HIPS(HR-1360) materials.

  • PDF

Wear Characteristics of Metal Ball and Seat for Metal-Seated Ball Valve (금속 볼 밸브의 볼·시트 마멸 특성에 관한 실험적 연구)

  • Bae, Junho;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.32-37
    • /
    • 2016
  • The wear characteristics of metal ball and seat in a metal-seated ball valve significantly affect the performances such as leakage and valve torque. In this work, the wear characteristics of metal ball and seat are experimentally investigated. A stainless steel ball and seat with a high corrosion-resistant coating are prepared and a component level test was performed. The hardness and surface roughness of specimens cut from the metal ball and seat are measured before and after the test using a micro-Vickers hardness tester and confocal microscopy, respectively. In order to assess the wear characteristics, the surfaces of the specimens are carefully examined after the test. The confocal microscope data show that the surface roughness values of both the ball and seat increase by a factor of 3-4, which may lead to an increase in valve torque. However, the wear of the seat is found to be more significant than that of the ball. In addition, a comparison of the surfaces of the ball and seat before and after testing revealed that adhesive and abrasive wear are the major wear mechanisms. The results of this study may aid in the design of metal-seated ball valves from the tribological point of view.

The Adhesion of TiN Coatings on Plasma-nitrided Steel (이온 질화층이 TiN 박막의 밀착성에 미치는 영향)

  • Ko, K.M.;Kim, H.W.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.1-14
    • /
    • 1991
  • In PECVD(Plasma-Enhanced Chemical Vapor Deposition) process, titanium nitride is thin and its adhesion is poor for the protective coatings. Therefore it has been studied that intermediate layer forms between substrate and TiN thin film. Using R.F. plasma nitriding, nitride layer was first formed, then TiN thin film coated by PECVD. The chemical composition of the coatings has been characterized using AES, EDS and their crystallographic structure by means of XRD. Mechanical properties such as microhardness and film adhesion have also been determined by vickers hardness test, scratch test and indentation test. As a result, there was no difference in chemical composition and structure between the TiN deposition only and the composite of TiN deposition on nitrided steel. It was found that nitrided substrate increased the hardness of TiN coatings and was beneficial in preventing the plastic deformation in the substrate. Therefore the effective load bearing capacity of the TiN coatings on nitrided steel was increased and their adhesion was improved as well. According to the results of this study, the processes that lead to the formation of composite layers characterized by good working properties, i.e., high microhardness, adhesion and resistance to deformation.

  • PDF

Porcelain Bonding Strength and Mechanical Properties of Sintered Ni-Cr-Ti Alloy for Dental Prosthodontics (치과보철용 Ni-Cr-Ti 소결체합금의 포셀린결합력 및 기계적 특성)

  • Choe, Han-Cheol;Park, Seon-Yeong;Shim, Myung-Sub
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.560-566
    • /
    • 2016
  • In this study, porcelain bonding strength and mechanical properties of sintered Ni-Cr-Ti alloy for dental prosthodontics have been researched experimentally. Mechanical and morphological characteristics of the alloys were examined by Vickers hardness test, tensile and bonding strength test, surface roughness test, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. In the sintered Ni-13Cr-xTi alloys, morphology of sintered alloy showed porous matrix diffused with alloying elements of Cr and Ti, and showed dendritic structure after melting process. From the XRD results, the second phases of NiCr, $Ni_3Cr$, and $Ni_3Ti$ were formed in the case of sintered and melted Ni-13Cr-xTi alloys. The tensile strength and hardness of Ni-13Cr-xTi alloys increased, as Ti content increased. Surface roughness increased, as Ti content increased. The bonding strength between metal and porcelain of Ni-13Cr-5Ti alloy was higher than those of Ni-13Cr and Ni-13Cr-10Ti alloys

Phase transformation and grain boundary precipitation related to the age-hardening of an Au-Ag-Cu-Pt-Zn alloy for crown and bridge fabrication (관교의치용 Au-Ag-Cu-Pt-Zn 합금의 시효경화성과 관련된 상변태와 입계석출)

  • Cho, Mi-Hyang
    • Journal of Technologic Dentistry
    • /
    • v.34 no.4
    • /
    • pp.345-352
    • /
    • 2012
  • Purpose: The age-hardening mechanism of an Au-Ag-Cu-Pt-Zn alloy for crown and bridge fabrication was investigated by means of hardness test, X-ray diffraction study and field emission scanning electron microscopic observation. Methods: Before hardness testing, the specimens were solution treated and then were rapidly quenched into ice brine, and were subsequently aged isothermally at $400-450^{\circ}C$ for various periods of time in a molten salt bath and then quenched into ice brain. Hardness measurements were made using a Vickers microhardness tester. The specimens were examined at 15 kV using a field emission scanning electron microscope. Results: By the isothermal aging of the solution-treated specimen at $450^{\circ}C$, the hardness increased rapidly in the early stage of aging process and reached a maximum hardness value. After that, the hardness decreased slowly with prolonged aging. However, the relatively high hardness value was obtained even with 20,000 min aging. By aging the solution-treated specimen, the f.c.c. Au-Ag-rich ${\alpha}_0$ phase was transformed into the Au-Ag-rich ${\alpha}_1$ phase and the AuCu I ordered phase. Conclusion: The hardness increase in the early stage of aging process was attributed to the formation of lattice strains by the precipitation of the Cu-rich phase and then subsequent ordering into the AuCu I-type phase. The decrease in hardness in the later stage of aging process was due to the release of coherency strains by the coarsening of tweed structure in the grain interior and by the growth and coarsening of the lamellar structure in the grain boundary. The increase of inter-lamellar space contributed slightly to the softening compared to the growth of lamellar structure toward the grain interior.

Evaluation of physical properties of polycarbonate temporary restoration materials (폴리카보네이트 임시수복재료의 물성 평가)

  • Kim, Gwang-Yun;Kwak, Young-Hun;Kim, Hee-Jung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.168-175
    • /
    • 2020
  • Purpose: The purpose is to test and evaluate the physical properties of commonly used temporary restoration materials and newly emerged materials. Materials and Methods: Four groups of polymer materials were evaluated: Polymethyl methacrylate (PMMA) 2 groups, Polyetheretherketone (PEEK), Polycarbonate. Four physical properties were tested: surface hardness, bending strength, abrasion resistance during wear, wear behavior. The 3-axis bending strength and Vickers hardness test were measured using a universal testing machines respectively. The microstructure was observed with a scanning electron microscope and weight comparison was evaluated after 100,000 chewing tests using a chewing simulator. Kruskal wallis test was performed to evaluate statistical significance. Results: The four groups showed the highest flexural strength and Vickers hardness of PEEK, followed by PC, PMMA-H, PMMA-T. Microstructure observation also showed the least surface roughness in the PEEK group, followed by PC, PMMA-H, PMMA-T. Conclusion: PC is considered to have sufficient mechanical properties that can be applied to the manufacture of temporary teeth. However, further studies, such as biocompatibility, are considered to be necessary for practical clinical applications.

Effects of Gas Flow Ratio on the Properties of Tool Steel Treated by a Direct Current Flasma Nitriding Process

  • Jang H. K.;Whang C. N.;Kim S. G.;Yu B. G.
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.5
    • /
    • pp.202-206
    • /
    • 2005
  • Nitriding treatments were conducted on tool steel (SKD 61) at a temperature of $500^{\circ}C$ for 5 hr using high vacuum direct current (DC) plasma, with ammonia and argon as source gases. The structural and compositional changes produced in the nitrided layers by applying different ratios of Ar to $NH_{3}\;(n_{Ar}/n_{NH3}) were investigated using glancing x-ray diffraction (GXRD), optical microscopy, atomic force microscopy (AFM), micro-Vickers hardness testing, and pin-on-disc type tribometer. Nitriding case depths of around of $50{\mu}m$ were produced, varying slightly with different ratios of $n_{Ar}/n_{NH3}. It was found that the specimen surface hardness was 1150 Hv with $n_{Ar}/n_{NH3}=1, increasing to a maximum value of 1500 Hv with $n_{Ar}/n_{NH3}=5. With a further increase in ratio to $n_{Ar}/n_{NH3}=10, the surface hardness of the specimen reduced slightly to a value of 1370 Hv. These phenomena were caused by changes of the crystallographic structure of the nitride layers, i.e the $\gamma'-Fe_{4}N$ phase only was observed in the sample treated with $n_{Ar}/n_{NH3}$=1, and the intensity of the $\gamma'-Fe_{4}N$ phase were reduced but new phase of $\varepsilon'-Fe_{3}N$, which was known as a high hardness, with increasing $n_{Ar}/n_{NH3}. Also, the relative weight loss of counterface of the pin-on-disc with unnitrided steel was 0.2. And that of nitrided steel at a gas mixture ($n_{Ar}/n_{NH3}) of 1, 5, 7, and 10 was 0.4, 0.7, 0.6, and 0.5 mg, respectively. This means that the wear resistance of the nitrided samples could be increased by a factor of 2 at least than that of unnitrided steel.

Fabrication and Characteristics of Bioceramics for Artificial Dental Crowns (II) Mechanical Characteristics, Color and Color difference (인공치용 바이오 세라믹스의 제조 및 특성(II) 기계적 특성과 색도 및 색차변화)

  • 고영호;한복섭;이준희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1203-1211
    • /
    • 1995
  • The tests of three point bending and vickers hardness have been carried out to investigate mechanical characteristics of bioceramics for artificial dental crowns. And color and color difference test has been performed to study chromaticity changes after sintering specimens composited with glass and leucite powders. In addition, thermal dilation test has been carried out to examine bonding relations between dental porcelain and metal frame (Ni-Cr alloy). The result of three point bending test showed a maximum strength of about 68 MPa. Thermal expansion coefficient changed from 8.3$\times$10-6/$^{\circ}C$ to 13.5$\times$10-6/$^{\circ}C$ with increasing leucite content (0~30wt.%) in glass matrix. Bonding between porcelain (25% leucite-75% glass) and Ni-Cr alloy was excellent.

  • PDF

CURING REACTION OF THE LIGHT CURED FLOWABLE COMPOSITE RESINS THROUGH THE ENDODONTIC TRANSLUCENT FIBER POST (투명 fiber 포스트를 통한 광중합형 접착레진의 중합 반응)

  • Ahn Seok;Park Sang-Won;Yang Hong-So;Vang Mong-Sook;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the efficacy and substitute possibility of a newly developed flowable composite resins as a luting cement for translucent fiber post. Material & Method: Two kinds of 12 mm translucent fiber Post (D.T. Light-Post (Bisco, USA) and FRC Postec (Ivoclar vivadent, Liechtenstein) was inserted into the teflon mold (7 mm diameter, 9 mm long) and Filtek-Flow (3M ESPE. USA), a light activated flowable composite resin, was polymerized for 60 seconds through the post. Also, the post was cut from the tip to 9 mm, 6 mm, 3 mm, and Filtek-Flow was light cured according to each length. For comparison, 60 seconds light-cured and 24 hours self-cured two dual cured resin cement (Duo-cement (Bisco, USA) and 2 Panavia-F (Kuraray, Japan)) samples were prepared as control group. Also cavities (1 mm in width, 1 mm in depth and 12 mm in length) were prepared using acrylic plate and aluminum bar, and flowable composite resin was flied and light cured by the diffused light from the fiber post's side wall. The degree of polymerization was measured according to the distance from curing light using Vickers' hardness test. Result: Within the limitation of this study, the following conclusions were drawn: 1. Vickers' hardness of light cured dual cured resin cement and flowable composite resin decreased from Panavia-F, Filtek-Flow and Duo-cement accordingly (p<0.05). In the dual curing resin cement, light curing performed group showed higher surface hardness value than self cured only group (p<0.05). 2. Surface hardness ratio (light cured through fiber post /directly light cured) of D.T. Light-Post using Filtek-Flow showed about 70% in the 6 mm deep and about 50% in the 12 mm deep FRC Postec showed only 40% of surface hardness ratio. 3. Surface hardness ratio by diffused light from the post's side wall showed about 50% at 6 mm and 9 mm deep, and about 40% at 12 mm deep in D.T. Light-Post. However, FRC Postec showed about 40% at 6 mm deep, and almost no polymerization in 9 mm and 12 mm deep.