• 제목/요약/키워드: Vicarious Calibration Equipment

검색결과 2건 처리시간 0.016초

DESIGN AND DEVELOPMENT OF THE COMPACT AIRBORNE IMAGING SPECTROMETER SYSTEM

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.118-121
    • /
    • 2007
  • In recent years, the hyperspectral instruments with high spatial and high spectral resolution have become an important component of wide variety of earth science applications. The primary mission of the proposed Compact Airborne Imaging Spectrometer System (CAISS) in this study is to acquire and provide full contiguous spectral information with high quality spectral and spatial resolution for advanced applications in the field of remote sensing. The CAISS will also be used as the vicarious calibration equipment for the cross-calibration of satellite image data. The CAISS consists of six physical units: the camera system, the Jig, the GPS/INS, the gyro-stabilized mount, the operating system, and the power inverter and distributor. Additionally, the calibration instruments such as the integrated sphere and spectral lamps are also prepared for the radiometric and spectral calibration of the CAISS. The CAISS will provide high quality calibrated image data that can support evaluation of satellite application products. This paper summarizes the design, development and major characteristic of the CAISS.

  • PDF

VICARIOUS GROUND CALIBRATION OF AIRBORNE MULTISPECTRAL SCANNER (AMS) DATA BASED ON FIELD CAMPAIGN

  • Lee, Kwang-Jae;Kim, Yong-Seung;Han, Jong-Gyu
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.184-187
    • /
    • 2006
  • The radiometric correction is prerequisite to derive both land and ocean surface properties from optical remote sensing data. Radiometric calibration of remotely sensed data has traditionally been accomplished by means of vicarious ground calibration techniques. The purpose of this study is to calibrate the radiometric characteristic of Airborne Multispectral Scanner (AMS) by field campaign. In order to calibrate the AMS data, four different spectral tarps which are 3.5%, 23%, 35%, and 53% were validated by GER-3700 that is the surface reflectance measurement equipment and were utilized. After validation of the spectral tarps, each reflectance from the spectral tarps was compared with Digital Number (DN) value of AMS. There was very high correlation between tarp reflectance and DN value of AMS so that radiometric calibration of AMS data has been accomplished by those results. The calibrated AMS data were validated with in-situ measured reflectance data from artificial and natural target. Also QuickBird image data were used for verifying the results of AMS radiometric calibration. This presentation discusses the results of the above tests.

  • PDF