• Title/Summary/Keyword: Vibratory roller

Search Result 7, Processing Time 0.02 seconds

A Study on the Excavation Method Near Fish Farms and Livestock (양만장 및 가축사육시설 인접지역 암굴착공법 검토에 관한 연구)

  • Lim, Dae-Kyu;Shin, Young-Cheol;Jun, Yang-Bae
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2013
  • Construction vibration such as explosive blast, hydraulic breaker, vibratory roller, pile driving noise and so on, injuries in areas around the construction sites. In particular, underwater sound caused by ground vibration is propagation such as structure borne noise. Vibration and underwater sound due to construction activities may cause injury to river, sea or land fish farms near construction sites. The purpose of present study is to measure the sound pressure level and frequency analysis of the underwater noise generated by ground vibration(Blasting, hydraulic crawler drill, hydraulic breaker, vibratory roller). Underwater noise were monitoring by a hydrophone (TC 4013) and recorded, analysis were made using a by software (Prosig).

The Influence of Field Compaction Method on the Efficiency of Compaction and the C. B. R. Value (전압방법(轉壓方法)이 전압효과((轉壓效果) 및 C. B. R. 값에 미치는 영향(影響))

  • Chung, Sang;Kang, Yea Mook
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.292-309
    • /
    • 1983
  • This study is intended to find out the degree of compaction in field compaction, with soil type, the thickness of soil layer and the number of roller passing through the field density test and the field C. B. R. test by comparing vibration and non-vibration compactions. The results in this study are summarized as follows. 1. When the number of roller passing is few, it shows that the efficiency of the compaction by vibratory compaction is greater than that by non-vibratory compaction, the difference of the compaction ratio between vibratory and non-vibratory compaction is decreased according as the number of roller passing is more frequent. 2. Mechanizing on a large scale it is possible for a large equipment to be able to reach the point of A-1 compact ion method with three to five times of roller passing. To provide for mechanizing on a larger scale it is advisable to fix the standard by the D-2 compaction method. 3. As dry-density increases, the C. B. R. value increases, but the increasing ratio of C. B. R. value showed greater in vibrating compacting. 4. According as the number of roller passing increases, the increasing tendency of the C. B. R. Value is slow and the difference of the C. B. R. value between vibration and non-vibration compaction is large, the C. B. R. value showed greater about 20% in vibration compaction than in non-vibration compaction. 5. In C-5 soil type, with increasing the thickness of compaction, the degree of compaction is decreased. When the thickness of compaction is increased from 20cm to 30cm, the degree of compaction is decreased slowly, while the thickness of the compaction is increased from 30cm to 40cm the degree of compaction is decreased remarkably. Therefore it is advisable to compact the ground under the thickness of 30cm.

  • PDF

A Study on the Reduction of the Torsional Angular Acceleration on Chain Drive Wheel of Marine Diesel Engine

  • Kim, Sang-Jin;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.215-223
    • /
    • 2007
  • When the propulsion shafting system of marine diesel engine is designed. the vibratory stresses on shafts should be reviewed and be satisfied with limits which are laid down by classification societies In addition. the torsional vibration aspects for crankshaft of main engine are requested to be checked by engine designers. Especially. for the 4, 5, and 6-cylinder engines. the 2nd order moment compensator(s) may be installed to compensate the external moments of engine and not to excite the hull girder vibration. This moment compensator which is mounted on fore and/or after-end of engine is driven by the roller chain drive for some of MAN 2-stroke diesel engines. While the engine is running, the roller chain Is worn down, which causes the extension of roller chain. The chain therefore should be checked and tightened by periods in order to keep its functionality. However. when the torsional angular acceleration of chain drive exceeds the certain limit. the chain will suffer the excessive slack and transverse vibration. This may cause fatigue, wear or damage on the chain and the chain ultimately may be broken. The research object of this thesis is to review factors which affect the angular acceleration of chain drive and to find out how to decrease the angular acceleration of driving chain by checking factors which have a major contribution to acceleration reduction using the statistical method of DOE(design of experiment), correlation analysis and regression analysis methods.

Theoretical Development of Compaction Density (다짐밀도의 이론적 전개)

  • Huh, Jung-Do;Kim, Han-Yong;Nam, Young-Kug
    • International Journal of Highway Engineering
    • /
    • v.2 no.1
    • /
    • pp.147-156
    • /
    • 2000
  • Compaction is known to critically affect pavement performance. Due to its importance, a theoretical modelling of compacted density in the term of number of roller coverages is attempted by assuming compaction process essentially identical to pavement rutting. Excellent data fittings by the developed equation may prove the validation of assumptions made as well as justification of its use. According to the derived equation, a plot of density difference with respect to number of roller coverages in the logarithmic scale Produces a linear relationship. However, this linearity is turned out to be deviated by cooling effect, change of amplitude and frequency. Investigation of these three factors proposes a new generalized compaction density equation, which shows a promising future. By applying this general formula, the equations for the number of roller coverages required and the final compaction density obtained for a particular compaction project is derived first time in compaction research.

  • PDF

Laboratory experiments on the improvement of rockfill materials with composite grout

  • Wang, Tao;Liu, Sihong;Lu, Yang
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.307-316
    • /
    • 2019
  • Dam deformation should be strictly controlled for the construction of 300 m-high rockfill dams, so the rockfill materials need to have low porosity. A method of using composite grout is proposed to reduce the porosity of rockfill materials for the construction of high rockfill dams. The composite grout is a mixture of fly ash, cement and sand with the properties of easy flow and post-hardening. During the process of rolling compaction, the grout admixture sprinkled on the rockfill surface will gradually infiltrate into the inter-granular voids of rockfill by the exciting force of vibratory roller to reduce the porosity of rockfill. A visible flowing test was firstly designed to explore the flow characteristics of composite grout in porous media. Then, the compressibility, shear strength, permeability and suffusion susceptibility properties of composite grout-modified rockfill are studied by a series of laboratory tests. Experimental results show that the flow characteristics of composite grout are closely related to the fly ash content, the water-to-binder ratio, the maximum sand size and the content of composite grout. The filling of composite grout can effectively reduce the porosity of rockfill materials, as well as increase the compression modulus of rockfill materials, especially for loose and gap-graded rockfill materials. Composite grout-modified rockfill tends to have greater shear strength, larger suffusion erosion resistance, and smaller permeability coefficient. The composite grout mainly plays the roles of filling, lubrication and cementation in rockfill materials.

Soil Stiffness Evaluation using Vibration Frequency (진동주파수 해석을 통한 지반강성 평가방법)

  • Kim, Ju-Hyong;Yoo, Wan-Kyu;Kim, Byoung-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.987-992
    • /
    • 2009
  • Continuous Compaction Control is a new cutting edge technique in United States, Japan and European construction market that uses an instrumented compactor to measure soil stiffness in real time usually with vehicle tracking system such as Global Navigation Satellite System (GNSS). In this study, soil stiffness was evaluated by adapting Fourier transforming technique with acceleration data obtained from accelerometers used as a continuous compaction control instrument. The soil stiffness obtained by accelerometers gave analogous results with reference results such as dry density, elastic modulus obtained from Geogauge and Light falling deflectometer.

  • PDF

Analysis of Effective Improvement Depth for Establishing Quality Control Criteria of Rapid Impact Compaction for Public Fill Compaction (Public Fill 다짐 시 급속충격다짐공법의 품질관리기준 수립을 위한 유효개량심도 분석)

  • Kim, Kyu-Sun;Park, Jaeyoung;Kim, Hayoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.5-18
    • /
    • 2023
  • The construction timeline for earthworks can be significantly reduced by substituting the conventional layer-by-layer compaction using a vibratory roller with single-layer compaction through the rapid impact compaction (RIC) method. Dynamic load compaction is well-suited for coarse-grained soils like sand. However, as the supply of sand, the primary reclamation material, becomes scarcer, the utilization of soil with fines is on the rise. To implement the dynamic load compaction, such as RIC, with reclaimed materials containing fines, it's imperative to determine the effective improvement depth. In this study, we assess the impact of the RIC method on the effective improvement depth for clean sand and public fill with fines, comparing field test results before and after RIC application. Our focus is on the cone resistance (qc) as it pertains to compaction quality control criteria. In conclusion, it becomes evident that standardizing the cone resistance is vital for the quality control of various reclaimed soils with fines. We have evaluated the compaction quality control criteria corresponding to a relative density (Dr) of 70% for clean sand as Qtn,cs = 110. As a result of this analysis, we propose new quality control criteria for qc, taking into account the fines content of reclaimed soils, which can be applied to RIC quality control.