• Title/Summary/Keyword: Vibrational stress

Search Result 53, Processing Time 0.029 seconds

A Study on Stress and Vibration Evaluations and Application of Piping System in Petrochemical Plant (석유화학 플랜트 배관계의 응력 및 진동 평가와 적용에 관한 연구)

  • 민선규;최명진;장승호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.110-116
    • /
    • 2002
  • Here are shown on stress and vibration evaluations and application of piping system in petrochemical plant with and actual example. While stress evaluation by thermal growth has no argument on the calculated results, vibrational evaluations have some different results in accordance with the evaluation methods. In case of the static stress evaluation the ASME B3l.3 code defines 7000 cycles of fatigue lift: in operating the piping system with a design condition. However, the method of vibrational evaluation on piping systems in petrochemical plants has not been established clearly, yet. In this stuffy, it is purposed to present the requirement of a vibrational evaluation method for petrochemical plant piping system, with an actual application.

A Study of Vibrational Characteristics of Underground Structures through Rock-Structure Interaction Analysis (주변암반과의 상호거동 해석을 통한 지하구조물의 진동특성에 관한 연구)

  • 김문겸;이재영;김용규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.229-234
    • /
    • 1997
  • The dynamic behavior of underground structures is complex due to the effects of vibrational characteristics of the structure and the rock. In this study, dynamic displacement responses at the structure surface by the elastic stress waves are considered as the vibrational characteristics, and evaluated by the form of the frequency spectrum. The variation of the vibrational characteristic is simulated by numerical analysis at the case of the structure has internal defections. The results reveals the possibility of the experimental detection of void existence and size. Furthermore, the verification of the dynamic response can be used for rating the stability of a tunnel.

  • PDF

Reduction of residual stress for welded joint using vibrational load

  • Aoki, Shigeru;Nishimura, Tadashi;Hiroi, Tetsumaro
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.355-365
    • /
    • 2004
  • A new reduction method of residual stress in welding joint is proposed where welded metals are shaken during welding. By an experiment using a small shaker, it can be shown that tensile residual stress near the bead is significantly reduced. Since tensile residual stress on the surface degrades fatigue strength for cumulative damage, the proposed method is effective to reduction of residual stress of welded joints. The effectiveness of the proposed method is demonstrated by the response analysis using one mass model with nonlinear springs.

Structural and Vibrational Characteristics for the Scaffolding System of LNG Cargo Containment (LNG 화물창 비계 시스템의 구조해석 및 진동 특성)

  • Ryu, B.J.;Shin, G.B.;Nahm, Y.E.;Oh, B.J.;Baek, S.G.;Kim, H.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1197-1202
    • /
    • 2007
  • The paper deals with the structural analysis and vibration test for the scaffolding system of LNG cargo containment. The eight-stories scaffolding system has telescopic area, working area, coner area and storage area in real system. In the structural analysis, the maximum displacement and stress of the each floor for the scaffolding system are investigated by finite element method. In the vibrational analysis, the natural frequencies and mode shapes for 8-stories scaffolding system of the LNG cargo containment are investigated. In order to compare theoretical natural frequencies with experimental ones, small size of 2-step scaffolding structure is used, and the theoretical results for natural frequency have a good agreement with experimental ones.

  • PDF

Changes of Vibrational characteristics due to the spaces of the Langevin type vibrators (란쥬반형 진동자의 형상에 따른 진동특성 변화)

  • Park, Min-Ho;Jeong, Dong-Seok;Park, Tae-Gone;Kwon, Oh-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.97-102
    • /
    • 2002
  • Bolt-tightened Langevin type vibrators using longitudinal mode of bar were designed and fabricated. In order to amplify the displacement of the tip of the vibrators, stacked ceramics were used and five different shapes of the horns were designed and fabricated. Resonant frequencies and vibrational characteristics of vibrators and horns were analyzed by ANSYS(finite element analysis computer program), and the displacements of tips of the horns were measured. As results, when the number of the stacked ceramics were increased, the displacements of the tips were increased and the driving voltages were decreased. Step1 horn(BLT-Stl) showed maximum displacement of 36.92[${\mu}m$] at 36.7[kHz] with 45[Vrms] and 0.11[A]. The displacement amplification ratio was about 5.2. But, the stress of step1 horn was concentrated on intersection, where two diameters meet. To lessen the stress, step3 shaped horn is recommended.

  • PDF

Thermal stress effects on microtubules based on orthotropic model: Vibrational analysis

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Fareed, Khurram;Safeer, Muhammad;Khedher, Khaled Mohamed;Ahmad, Manzoor;Naeem, M. Nawaz;Qazaq, Amjad;Qahtani, Abdelaziz Al;Mahmoud, S.R.;Alwabli, Afaf S.;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.255-260
    • /
    • 2021
  • Vibration of protein microtubules is investigated based upon Orthotropic Elastic Shell Model, considering the effect of thermal stresses. The complete analytical formulas of thermal vibration for microtubules are obtained. It is observed that the effects of thermal stresses on the vibrational frequency mode are more significant when the longitudinal and circumferential wave vectors are large enough. But when the length of wave vector reduces to 5 nm, these effects have no significant effects. The present results well agree with the lattice vibrations of microtubules. Moreover, the results show that the effects of thermal stresses due to small change in temperature are not so significant but with the increase in temperature its effects are obvious.

Resonance frequency and stability of composite micro/nanoshell via deep neural network trained by adaptive momentum-based approach

  • Yan, Yunrui
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.477-491
    • /
    • 2022
  • In the present study, the effects of thermal loading on the buckling and resonance frequency of graphene platelets (GPL) reinforced nano-composites are examined. Functionally graded (FG) material properties are considered in thickness direction for the thermal responses of the composite. The equivalent material properties are obtained using Halphin-Tsai nano-mechanical model for composite layers. Moreover, the effects of nano-scale sizes are taken into account, employing functionally modified couple stress (FMCS) parameter. In this regard, for the first time, it is demonstrated that at certain values of GPL weight fraction, thermal buckling occurs. In obtaining results of vibrational behavior, both analytical solution and deep neural network (DNN) methods are used. The DNN method needs low computational costs to predict the resonance behavior. A comprehensive parametric study is conducted to indicate the effects of several geometrical, material, and loading conditions on the vibrational and buckling behavior of cylindrical shell structures made of GPL-nanocomposites. It is shown that the effect of temperature change on the occurrence of buckling is vital while it has a negligible impact on the resonance frequency of the structure. Moreover, the size-dependency of the results is demonstrated, and it cannot be neglected in nano-scales.

Structural Analysis and Vibration Characteristics of Scaffolding Structures (비계 구조물의 구조해석 및 진동 특성)

  • Ryu, B.J.;Lee, C.R.;Kim, H.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.491-498
    • /
    • 2009
  • This paper deals with structural analysis and vibration characteristics of scaffolding structures with a hoist according to payloads. In order to analyze the vibrational and structural characteristics for 20-step scaffolding structure, structural and vibrational characteristics for 2-step scaffolding structure were compared with some experimental results. The numerical results for natural frequencies of scaffolding structures have a good agreement with experimental ones. Through the numerical analysis, firstly, it is shown that the maximum stress of scaffolding structures is lower than von-mises yield criteria when four persons with total weight of 280 kgf are working at the top of the scaffolding structures. Secondly, vibration characteristics including natural frequencies and modes for scaffolding structures are shown in case of various kinds of moving masses.

A Study on Vibration Characteristics of Scaffolding Structures with a Hoist according to Payloads (호이스트에 의한 비계 이송 시 적재하중에 의한 구조물 진동특성 연구)

  • Ryu, B.J.;Shin, G.B.;Lee, J.Y.;Baek, S.G.;Kim, H.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.543-548
    • /
    • 2006
  • This paper presents the vibration characteristics of scaffolding structures with a hoist according to payloads. In order to analyze the vibrational and structural characteristics for 20-step scaffolding structure, structural and vibrational characteristics for 2-step scaffolding structure were compared with some experimental results. The numerical results for natural frequencies of scaffolding structures have a good agreement with experimental ones. Through the numerical analysis, firstly, it is shown that the maximum stress of scaffolding structures is lower than von-mises yield criteria when four persons with total weight of 280kgf are working at the top of the scaffolding structures. Secondly vibration characteristics including natural frequencies and modes for scaffolding structures are shown in case of various kinds of moving masses.

  • PDF

Structural and Vibration Characteristics for the Scaffolding System of LNG Cargo Containment (LNG 화물창 비계 시스템의 구조해석 및 진동 특성)

  • Oh, B.J.;Ryu, B.J.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.546-554
    • /
    • 2010
  • The paper deals with the structural analysis and vibration test for the scaffolding system of LNG cargo containment. The eight-stories scaffolding system has telescopic area, working area, coner area and storage area in real system. In the structural analysis, the maximum displacement and stress of the each floor for the scaffolding system are investigated by finite element method. In the vibrational analysis, the natural frequencies and mode shapes for 8-stories scaffolding system of the LNG cargo containment are investigated. In order to compare theoretical natural frequencies with experimental ones, small size of 2-step scaffolding structure is used, and the theoretical results for natural frequency have a good agreement with experimental ones.