• 제목/요약/키워드: Vibrational relaxation

검색결과 28건 처리시간 0.029초

분자간 충돌과정에 따른 병진-회전-진동에너지의 이완율 (The Effect of the Collision Process Between Molecules on the Rates of Thermal Relaxation of the Translational-Rotational-Vibrational Energy Exchange)

  • 허중식
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1494-1500
    • /
    • 2004
  • A zero-dimensional direct simulation Monte Carlo(DSMC) model is developed for simulating diatomic gas including vibrational kinetics. The method is applied to the simulation of two systems: vibrational relaxation of a simple harmonic oscillator and translational-rotational-vibrational energy exchange process under heating and cooling. In the present DSMC method, the variable hard sphere molecular model and no time counter technique are used to simulate the molecular collision kinetics. For simulation of diatomic gas flows, the Borgnakke-Larsen phenomenological model is adopted to redistribute the translational and internal energies.

Theoretical Investigation of the Vibrational Relaxation of NO(${\upsilon}=1-7$) in Collisions with $O_{2}\;and\;N_{2}$

  • Jongbaik Ree
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권1호
    • /
    • pp.47-52
    • /
    • 1993
  • The vibrational relaxation rate constants of NO(v = 1-7) by $O_2\;and\;N_2$ have been calculated in the temperature range of 300-1000 K using the solution of the time-dependent Schrodinger equation. The calculated relaxation rate constants by $O_2$ increase monotonically with the vibrational energy level v, which is compatible with the experimental data, while those by $N_2$ are nearly independent of v in the range of $3.40 {\pm}1.60{\times}10_{-16} cm^3$/molecule-sec at 300 K. Those for NO(v) + $N_2$ are about 2-3 orders of magnitude smaller than those for NO(v) + $O_2$, because the latter is an exothermic processes while the former an endothermic. Relaxation processes can be interpreted by single-quantum V-V transition. The contributions of V-T/R transition and double-quantum V-V transition to the relaxation are negligible over the entire temperature range.

Collision-Induced Electronic Relaxation of Thiophosgene (S₁)

  • 김택수;Choi, Young S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권8호
    • /
    • pp.745-749
    • /
    • 1996
  • Fluorescence from the electronically excited thiophosgene (Cl2CS) in its first excited singlet state (S1) is efficiently quenched by collision. Rates of the collision-induced electronic relaxation were obtained for various vibrational levels in the S1 state by measuring the fluorescence lifetimes. We found that the relaxation process is strongly energy-dependent; the rate consistently increases by a factor of ~40 with the increase of vibrational energy from 0 to 1450 cm-1. Collision-induced intersystem crossing from the S1 to the first triplet state (T1) is attributed to the major process responsible for the electronic relaxation.

Ultrafast Investigation of Vibrational Relaxation and Solvent Coordination Following Photodissociation of Cr$(CO)_6$

  • Seok-Beum Ko;Soo-Chang Yu;J. B. Hopkins
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권9호
    • /
    • pp.762-765
    • /
    • 1994
  • Picosecond time-resolved resonance Raman spectroscopy has been used to study the photochemistry of Cr(CO$)_6$ in cyclohexane following photoexcitation at 266 nm. Photodissociative loss of CO is found to occur within our pulse width of ${\leq}$5 ps by probing the 533 c$m^{-1}$ vibrational mode of ground state Cr(CO$)_6$. The subsequent dynamics after photodissociation are interpreted in terms of solvation, vibrational and electronic relaxations. The vibrational relaxation time of 100 ps and 83 ps are observed by monitoring v=O and v=l of the 381 c$m^{-1}$ transient mode, respectively. No evidence was found for solvation and electronic relaxation occurring on a time scale of ${\leq}$5 ps.

Vibrational Relaxation of Cyanate or Thiocyanate Bound to Ferric Heme Proteins Studied by Femtosecond Infrared Spectroscopy

  • Park, Seongchul;Park, Jaeheung;Lin, Han-Wei;Lim, Manho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.758-764
    • /
    • 2014
  • Femtosecond vibrational spectroscopy was used to measure the vibrational population relaxation time ($T_1$) of different anions bound to ferric myoglobin ($Mb^{III}$) and hemoglobin ($Hb_{III}$) in $D_2O$ at 293 K. The $T_1$ values of the anti-symmetric stretching (${\nu}_1$) mode of NCS in the $NCS^-$ bound to $Mb^{III}$ ($Mb^{III}$NCS) and $Hb_{III}$ ($Hb_{III}$NCS) in $D_2O$ are $7.2{\pm}0.2$ and $6.6{\pm}0.2$ ps, respectively, which are smaller than that of free NCS. in $D_2O$ (18.3 ps). The $T_1$ values of the ${\nu}_1$ mode of NCO in the $NCO^-$ bound to $Mb^{III}$ ($Mb^{III}$NCO) and $Hb_{III}$ ($Hb_{III}$NCO) in $D_2O$ are $2.4{\pm}0.2$ and $2.6{\pm}0.2$ ps, respectively, which are larger than that of free $NCO^-$ in $D_2O$ ($1.9{\pm}0.2$ ps). The smaller $T_1$ values of the ${\nu}_1$ mode of the heme-bound NCS suggest that intramolecular vibrational relaxation (VR) is the dominant relaxation pathway for the excess vibrational energy. On the other hand, the longer $T_1$ values of the ${\nu}_1$ mode of the heme-bound NCO suggest that intermolecular VR is the dominant relaxation pathway for the excess vibrational energy in the ${\nu}_1$ mode of $NCO^-$ in $D_2O$, and that intramolecular VR becomes more important in the vibrational energy dissipation of the ${\nu}_1$ mode of NCO in $Mb^{III}$NCO and $Hb_{III}$NCO.

Vibrational Relaxation and Bond Dissociation in Methylpyrazine on Collision with N2 and O2

  • Young-Jin Yu;Sang Kwon Lee;Jongbaik Ree
    • 대한화학회지
    • /
    • 제67권6호
    • /
    • pp.407-414
    • /
    • 2023
  • The present study uses quasi-classical trajectory procedures to examine the vibrational relaxation and dissociation of the methyl and ring C-H bonds in excited methylpyrazine (MP) during collision with either N2 or O2. The energy-loss (-ΔE) of the excited MP is calculated as the total vibrational energy (ET) of MP is increased in the range of 5,000 to 40,000cm-1. The results indicate that the collision-induced vibrational relaxation of MP is not large, increasing gradually with increasing ET between 5,000 and 30,000 cm-1, but then decreasing with the further increase in ET. In both N2 and O2 collisions, the vibrational relaxation of MP occurs mainly via the vibration-to-translation (V→T) and vibration-to-vibration (V→V) energy transfer pathways, while the vibration-to-rotation (V→R) energy transfer pathway is negligible. In both collision systems, the V→T transfer shows a similar pattern and amount of energy loss in the ET range of 5,000 to 40,000cm-1, whereas the pattern and amount of energy transfer via the V→V pathway differs significantly between two collision systems. The collision-induced dissociation of the C-Hmethyl or C-Hring bond occurs when highly excited MP (65,000-72,000 cm-1) interacts with the ground-state N2 or O2. Here, the dissociation probability is low (10-4-10-1), but increases exponentially with increasing vibrational excitation. This can be interpreted as the intermolecular interaction below ET = 71,000 cm-1. By contrast, the bond dissociation above ET = 71,000 cm-1 is due to the intramolecular energy flow between the excited C-H bonds. The probability of C-Hmethyl dissociation is higher than that of C-Hring dissociation.

Vibrational Relaxation and Fragmentation in Icosahedral (Ar2+)Ar12 Clusters

  • Ree, Jongbaik;Kim, Yoo Hang;Shin, Hyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2774-2780
    • /
    • 2014
  • A dynamics study of relaxation and fragmentation of icosahedral argon cluster with a vibrationally excited $Ar_2^+$ (${\nu}$) is presented. Local translation is shown to be responsible for inducing energy flow from the embedded ion to host atoms and fragmentation of the cluster consisting of various low frequency modes. The total potential energy of $(Ar_2^+)Ar_{12}$ is formulated using a building-up procedure of host-guest and host-host interactions. The time dependence of ion-to-host energy transfer is found to be tri-exponential, with the short-time process of ~100 ps contributing most to the overall relaxation process. Relaxation timescales are weakly dependent on both temperature (50-300 K) and initial vibrational excitation (${\nu}$ = 1-4). Nearly 27% of host atoms in the cluster with $Ar_2^+$ (${\nu}$ = 1) fragment immediately after energy flow, the extent increasing to ~43% for ${\nu}$ = 4. The distribution of fragmentation products of $(Ar_2^+)Ar_{12}{\rightarrow}(Ar_2^+)Ar_n+(12-n)Ar$ are peaked around $(Ar_2^+)Ar_8$. The distribution of dissociation times reveals fragmentation from one hemisphere dominates that from the other. This effect is attributed to the initial fragmentation causing a sequential perturbation of adjacent atoms on the same icosahedral five-atom layer.