• Title/Summary/Keyword: Vibration problem

Search Result 1,779, Processing Time 0.039 seconds

A Study on the Mismatch of Time and Frequency Domain for Vibration Criteria of Sensitive Equipment (고정밀 장비의 진동허용규제치에 대한 시간 및 주파수 영역에서 나타나는 불일치 문제에 관한 연구)

  • 이홍기;김강부;백재호
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Modem technology depends on the reliability of extremely high precision equipments. In the production of semiconductor wafer, optical and electron microscopes, ion-beam, laser device must maintain their alignments within a sub-micrometer. This equipment requires a vibration free environment to provide its proper function. Therefore, this high technology equipments require very strict environmental vibration criteria because it is used as basic data for the design of building structure and structural dynamics of equipment. In this paper, the new approach is proposed to investigate the mismatch problem of time and frequency domain for vibration criteria of sensitive equipment. The proposed approach is based on a vibration measurement data and a relative transfer function which can be obtained by experiment or analysis.

  • PDF

Study about Domestic Rolling Stocks Vibration Test Standards (국내 철도차량 진동시험규격에 대한 연구)

  • Shim, Jung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.859-864
    • /
    • 2007
  • The rolling stock which is used the most frequently by public transportation has to secure reliability and safety. In these, vibration is the important factor which causes of serious problem of rolling stock. By the way, rolling stocks vibration test specific activity that is using translating JIS standard is serious mistake, but it is actuality that is used until present more than ten years. Study wishes to analyze problem of standard of domestic rolling stocks and present countermeasure.

  • PDF

A Formulation of NDIF Method to the Algebraic Eigenvalue Problem for Efficiently Extracting Natural Frequencies of Arbitrarily Shaped Plates with the Simply Supported Boundary Condition (단순지지 경계조건을 가진 임의 형상 평판의 효율적인 고유진동수 추출을 위한 NDIF법의 대수 고유치 문제로의 정식화)

  • Kang, S.W.;Kim, J.G.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.607-613
    • /
    • 2009
  • A new formulation of NDIF method to the algebraic eigenvalue problem is introduced to efficiently extract natural frequencies of arbitrarily shaped plates with the simply supported boundary condition. NDIF method, which was developed by the authors for the free vibration analysis of arbitrarily shaped membranes and plates, has the feature that it yields highly accurate natural frequencies compared with other analytical methods or numerical methods(FEM and BEM). However, NDIF method has the weak point that it needs the inefficient procedure of searching natural frequencies by plotting the values of the determinant of a system matrix in the frequency range of interest. A new formulation of NDIF method developed in the paper doesn't require the above inefficient procedure and natural frequencies can be efficiently obtained by solving the typical algebraic eigenvalue problem. Finally, the validity of the proposed method is shown in several case studies, which indicate that natural frequencies by the proposed method are very accurate compared to other exact, analytical, or numerical methods.

A Vibration Isolation Design for Engine Room Opening Deck around Heavy Spare Parts of the Main Engine (Main Engine의 Heavy Spare Parts가 설치된 Engine Room Opening Deck의 방진 설계 사례)

  • Jeon, Yong-Hoon;Lim, Gu-Sub;Jeong, Tae-Seok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.93-96
    • /
    • 2009
  • Foundation structure for the main engine heavy spare parts in the engine room is susceptible to resonance problem due to outfitting weight. In addition the deck floor has a large opening for the main engine installation and maintenance, which further weakens the foundation structure. To reinforce the weak structure, two types of approaches have been used; 1) insert an H-pillar below or above the floor and 2) increase the stiffener size. In this paper, the H-pillar approach is used to solve the vibration problem of the foundation structure in the engine room opening area. A commercial program is used to analyze the vibration problem ad to find the location and the size of the H-pillar. Modal test at the quay and on-board vibration measurement during the sea trial have confirmed the validity of inserting an H-pillar below the floor.

  • PDF

Case Study for Pitting of Elevator's Worm Gear Type Traction Machine (승강기용 웜기어 방식 권상기의 점식 발생 사례)

  • Seo, Sang-Yoon;Choi, Byeong-Keun;Yang, Bo-Suk;Lee, Seon-Sun;Kim, Sung-Hyeob
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1064-1070
    • /
    • 2012
  • This paper analyzes the pitting's cause of elevator's worm gear type traction machine. To find a cause of pitting problem, we analyzed vibration, a proper design allowance and lubrication. We brought a conclusion that the cause of pitting is not a simple vibration problem, such as misalignment of worm reducer and rail, but mostly related to a designed allowance. In this case, the allowance is tight. In general, the allowance of traction machine and lubrication is varied by manufacturers. When the allowance is tight, a proper lubrication can diminish the pitting problem.

Seismic vibration control of bridges with excessive isolator displacement

  • Roy, Bijan K.;Chakraborty, Subrata;Mishra, Sudib K.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1451-1465
    • /
    • 2016
  • The effectiveness of base isolation (BI) systems for mitigation of seismic vibration of bridges have been extensively studied in the past. It is well established in those studies that the performance of BI system is largely dependent on the characteristics of isolator yield strength. For optimum design of such systems, normally a standard nonlinear optimization problem is formulated to minimize the maximum response of the structure, referred as Stochastic Structural Optimization (SSO). The SSO of BI system is usually performed with reference to a problem of unconstrained optimization without imposing any restriction on the maximum isolator displacement. In this regard it is important to note that the isolator displacement should not be arbitrarily large to fulfil the serviceability requirements and to avoid the possibility of pounding to the adjacent units. The present study is intended to incorporate the effect of excessive isolator displacement in optimizing BI system to control seismic vibration effect of bridges. In doing so, the necessary stochastic response of the isolated bridge needs to be optimized is obtained in the framework of statistical linearization of the related nonlinear random vibration problem. A simply supported bridge is taken up to elucidate the effect of constraint condition on optimum design and overall performance of the isolated bridge compared to that of obtained by the conventional unconstrained optimization approach.

Investigation Study on Noise and Vibration Condition in Construction Site (건설공사장 소음.진동 실태조사에 관한 연구)

  • Sun, Hyo-Sung;Park, Young-Min;Jo, Youn-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.879-881
    • /
    • 2008
  • The construction noise and vibration is a serious social problem in the downtown. This results in many expenses and delays of construction process because of the satisfactory settlement of popular complaints. In this study, we analyze the dispute mediation cases on the damages of construction noise and vibration and the noise and vibration condition in construction sites by using questionnaire surveys.

  • PDF

Vibration Analysis of Rotary Compressors Considering the Coupled Effect of Motor (전동기의 연성을 고려한 로터리 압축기의 진동 해석)

  • 정의봉;황선웅;안세진;김정훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1055-1060
    • /
    • 2002
  • The noise and vibration of rolling piston-type compressors used in the most of the airconditional system is a serious and important problem occurred during turning on and off as well as during operating. To analyze the vibration occurred during turning on and oft, the vibration analysis of motor-compressor coupling is required. In this paper, through modeling of the motor, solving the force from the equations of motion of the moving parts and considering the stiffness of the rubber mounts, the analysis of vibration was performed.

  • PDF

Active Vibration Control of a Structure with Output Feedback Based on Simultaneous Optimization Design Method

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.57-64
    • /
    • 2000
  • Recent advances in the field of control theory have enabled us to design active vibration control systems for various structures. In many studies, the controller used to suppress vibration has been synthesized for the given mathematical model of structure. In these cases, the designer has not been able to utilize the degree of freedom to adjust the structural parameters of the control object. To overcome this problem, so called 'Structure/Control Simultaneous Optimization Method' is used. In this context of view, this paper is concerned with the active vibration control of bridge towers, platforms and ocean vehicles etc. Simultaneous design method is used to achieve optimal system performance. Here, a general framework for the simultaneous design problem of output feedback case is introduced based on LMI (Linear Matrix Inequality). The simulation results show that the proposed design method achieves desirable control performance.

  • PDF

A Study on Dynamic Characteristics of the Optical Disk Drive with Rubber Mount Absorber (흡진기 부착 광디스크 드라이브의 동특성 연구)

  • 강봉진;신효철;정태은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.580-584
    • /
    • 1997
  • As the optical disk drive is getting applied to wider ranges, higher density of media and higher velocity of spindle motor are demanded and therefore its design criterion is becoming more strict. Especially, the vibration problem is one of the most important factors to be considered for reliable performance. In this study, the possibility of the application of the vibration absorber using rubber mount was investigated by 3 dimensional modeling and analysis by Recurdyn program. The model chosen was a vibration absorber using rubber mount installed on the sled base of the optical disk drive.

  • PDF