• Title/Summary/Keyword: Vibration prediction

Search Result 1,088, Processing Time 0.023 seconds

A Study on Chatter Stability of High Speed Spindle (고속 스핀들의 채터 안정선도)

  • Shin, Seong-beom;Lee, Hyun-Hwa;Kim, Ji-S.;Kim, Ji-Yong;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.340-345
    • /
    • 2010
  • This paper presents the chatter stability lobes of high speed spindle of five-axis machine tools. Using a FEM, we obtained the frequency response function of a spindle and the stability lobes for evaluation of chatter. In addition, this paper suggest FRF using by FEM for the prediction of chatter stable region and critical cutting depth. Therefore, critical cutting depth of is 1.3586mm and X, Y direction's chatter frequency is 901Hz and 900Hz, respectively.

Prediction and Evaluation of Characteristics of Air Spring for Railroad Vehicle (철도차량용 공기스프링의 특성 예측 및 평가)

  • Kim, Wan-Doo;Hur, Shin;Kim, Suk-Won;Kim, Young-Gu
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.626-633
    • /
    • 2000
  • An air spring which is a part of the railroad vehicle suspension system is used to reduce and absorb the vibration and the noise. Main components of the air spying are a cord reinforced rubber bellows, a upper plate, a lower plate and a stopper rubber spring. The characteristics of the air spring which are the load capacity, the vertical and the horizontal stiffness are depended on the configuration of rubber bellows, the angle of cord and the mechanical properties of cord. The computer simulation using commercial finite element analysis codes are executed to predict and evaluate the load capacity and the stiffness. The appropriate shape and cord angle of the air suing are selected to adjust the required performance of the air spring. Several samples of the air spring are manufectured and experimented. It is shown that the results by computer simulation are in close agreement with the test results.

  • PDF

Determination of Water Content in Skin by using a FT Near Infrared Spectrometer

  • Suh Eun-Jung;Woo Young-Ah;Kim Hyo-Jin
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.458-462
    • /
    • 2005
  • The water content of skin was determined using a FT near infrared (NIR) spectrometer. NIR diffuse reflectance spectra were collected from hairless mouse, in vitro, and from human inner arm, in vivo. It was found that the variation of NIR absorbance band 1450 nm from OH vibration of water and 1940 nm from the combination involving OH stretching and OH deformation, depending on the absolute water content of separated hairless mouse skin, in vitro, using the FT NIR spectrometer. Partial least squares regression (PLSR) was applied to develop a calibration model. The PLS model showed good correlation. For practical use of the evaluation of human skin moisture, the PLS model for human skin moisture was developed in vivo on the basis of the relative water content of stratum corneum from the conventional capacitance method. The PLS model predicted human skin moisture with a standard errors of prediction (SEP) of 3.98 at 1130-1830 nm range. These studies showed the possibility of a rapid and nondestructive skin moisture measurement using FT NIR spectrometer.

Prediction and evaluation of ride comfort at high speed above 310 km/h for Korean high speed train (한국형 고속열차에 대한 고속(310 km/h 이상) 영역에서의 승차감 예측 및 평가)

  • Kim, Seog-Won;Mok, Jin-Yong;Kim, Sang-Su;Kim, Young-Guk
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.268-273
    • /
    • 2006
  • The ride comfort is more important in the train speedup. Generally, it is defined as the vehicle vibration. There are many studies on evaluation method of ride comfort for railway. But the ride comfort for Korean high speed train(HSR 350x) has been assessed by statistical method according to UIC 513R. It is very difficult for HSR 350x to run at constant speeds above 310 km/h during 5 minutes required in UIC 513R because of the same operational condition as KTX and the infrastructures. In this paper, the ride index at high speed above 310 km/h has been predicted by using those obtained below 310 km/h and the comfort for HSR 350x has been reviewed in these speeds.

  • PDF

A Study on the Complex Accelerating Degradation and Condition Diagnosis of Traction Motor for Electric Railway (전기철도용 견인전동기의 복합가속열화 상태진단에 관한 연구)

  • 왕종배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.93-101
    • /
    • 2002
  • In this study, the stator form-winding sample coils based on silicone resin and polyimide were made for fault prediction and reliability estimation on the C-Class(200$\^{C}$ ) insulation system of traction motors. The complex accelerative degradation was periodically performed during 10 cycles, which was composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, the condition diagnosis test such as insulation resistance '||'&'||' polarization index, capacitance '||'&'||' dielectric loss and partial discharge properties were investigated in the temperature range of 20 ∼ 160$\^{C}$. Relationship among condition diagnosis tests was analyzed to find a dominative degradation factor and an insulation state at end-life point.

An Experimental Study on the Prediction Method of Light Weight Floor Impact Sound Insulation Performance of Apartment Floor Structures through Mini-Laboratory Tests (축소실험실을 이용한 바닥완충구조의 경량충격음 차음성능 예측방법에 관한 실험적 연구)

  • 송민정;장길수;김선우
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.82-96
    • /
    • 2000
  • The purpose of this study is to figure out the relationship between the mini-laboratory and the reverberation room for the domestic floor structures which are practically constructed in apartment houses. For this purpose, seven specimen which were varied in structures and thicknesses were tested in Chonnam National University reverberation room and in the artificial mini-laboratory which is the $\farc{1}{3}$ scale model of the former. From the result of this study, it was proved that there is a good correlation between the mini-laboratory and the reverberation room for the apartment floor structures as well as floorcovering PVC. The result of this study could save the labor and the time, etc.

  • PDF

Controlling of ring based structure of rotating FG shell: Frequency distribution

  • Hussain, Muzamal
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.35-43
    • /
    • 2022
  • Based on novel Galerkin's technique, the theoretical study gives a prediction to estimate the vibrations of FG rotating cylindrical shell. Terms of ring supports have been introduced by a polynomial function. Three different laws of volume fraction are utilized for the vibration of cylindrical shells. Variation frequencies with the locations of ring supports have been analyzed and these ring supports are placed round the circumferential direction. The base of this approach is an approximate estimation of eigenvalues of proper functions which are the results of solutions of vibrating equation. Each longitudinal wave number corresponds to a particular boundary condition. The results are given in tabular and graphical forms. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing length-to-radius ratio. There is a new form of frequencies is obtained for different positions of ring supports, which is bell shaped. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases.

A Study on Experimental Prediction of Landslide in Korea Granite Weathered Soil using Scaled-down Model Test (축소모형 실험을 통한 국내 화강암 풍화토의 산사태 예측 실험 연구)

  • Son, In-Hwan;Oh, Yong-Thak;Lee, Su-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.439-447
    • /
    • 2019
  • In this study, experiments were conducted to establish appropriate measures for slopes with high risk of collapse and to obtain results for minimizing slope collapse damage by detecting the micro-displacement of soil in advance by installing a laser sensor and a vibration sensor in the landslide reduction model experiment. Also, the behavior characteristics of the soil layer due to rainfall and moisture ratio changes such as pore water pressure and moisture were analyzed through a landslide reduction model experiment. The artificial slope was created using granite weathering soil, and the resulting water ratio(water pressure, water) changes were measured at different rainfall conditions of 200mm/hr and 400mm/hr. Laser sensors and vibration sensors were applied to analyze the surface displacement, and the displacement time were compared with each other by video analysis. Experiments have shown that higher rainfall intensity takes shorter time to reach the limit, and increase in the pore water pressure takes shorter time as well. Although the landslide model test does not fully reflect the site conditions, measurements of the time of detection of displacement generation using vibration sensors show that the timing of collapse is faster than the method using laser sensors. If ground displacement measurements using sensors are continuously carried out in preparation for landslides, it is considered highly likely to be utilized as basic data for predicting slope collapse, reducing damage, and activating the measurement industry.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.

Defect Depth Measurement of Straight Pipe Specimen Using Shearography (전단간섭계를 이용한 직관시험편의 결함 깊이 측정)

  • Chang, Ho-Seob;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.170-176
    • /
    • 2012
  • In the nuclear industry, wall thinning defect of straight pipe occur the enormous loss in life evaluation and safety evaluation. To use non-destructive technique, we measure deformation, vibration, defect evaluation. But, this techniques are a weak that is the measurement of the wide area is difficult and the time is caught long. In the secondary side of nuclear power plants mostly used steel pipe, artificiality wall thinning defect make in the side and different thickness make to the each other, wall thinning defect part of deformation measure by using shearography. In addition, optical measurement through deformation, vibration, defect evaluation evaluate pipe and thickness defects of pressure vessel is to evaluate quantitatively. By shearography interferometry to measure the pipe's internal wall thinning defect and the variation of pressure use the proposed technique, the quantitative defect is to evaluate the thickness of the surplus. The amount of deformation use thickness of surplus prediction of the actual thickness defect and approximately 7 percent error by ensure reliability. According to pressure the amount of deformation and the thickness of the surplus through DB construction, nuclear power plant pipe use wall thinning part soundness evaluation. In this study, pressure vessel of thickness defect measure proposed nuclear pipe of wall thinning defect prediction and integrity assessment technology development. As a basic research defected theory and experiment, pressure vessel of advanced stability and soundness and maintainability is expected to contribute foundation establishment.