• Title/Summary/Keyword: Vibration prediction

Search Result 1,088, Processing Time 0.03 seconds

A Response Prediction Model for the Vortex-Induced Vibration of Marine Risers in Sheared Flow (전단류중 Marine Riser의 와류유기 진동 예측모델에 관한 연구)

  • Yong-Yun,Nam;Tae-Young,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.64-72
    • /
    • 1989
  • A response prediction model is introduced for the non-lockin vibration of a marine riser in sheared flow, where the riser is modelled as linearly varying tensioned-beam. This prediction model is based on the Green's function approach and random vibration theory. This model, of course, can treat general beams having slowly varying spatial system parameters. According to the predicted result of a marine riser by the prediction model proposed in this paper, the dynamic behavior of a marine riser has the mixed characteristics of finite and infinite boundary behavior. Furthermore the velocity response distribution along the riser length is much similar with the sheared flow profile. The predicted response result of a marine riser having linearly varying tension was also compared to that of constant mean tensioned-beam model. It was found that the constant mean tensioned-beam case gives over-estimated responses at the top side of the riser.

  • PDF

Seismic Response Prediction Method of Cabinet Structures in a Nuclear Power Plant Using Vibration Tests (진동시험을 이용한 원자력발전소 캐비닛 구조의 지진응답예측기법)

  • Koo, Ki-Young;Cui, Jintao;Cho, Sung-Gook;Kim, Doo-Kie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.57-63
    • /
    • 2008
  • This paper presents a seismic response prediction method using vibration tests of cabinet-type electrical equipment installed in a nuclear power plant. The proposed method consists of three steps: 1) identification of earthquake-equivalent forces based on lumped-mass system idealization, 2) identification of a state-space-equation model relating input-output measurements obtained from the vibration tests, 3) seismic prediction using the identified earthquake-equivalent forces and the identified state-space-equation. The proposed method is advantageous compared to other methods based on FEM (finite element method) model update, since the proposed method is not influenced by FEM modeling errors. Through a series of numerical verifications on a frame model and 3-dimensional shell model, it was found that the proposed method could be used to accurately predict the seismic responses, even under considerable measurement noise conditions. Experimental validation is needed for further study.

Prediction of skewness and kurtosis of pressure coefficients on a low-rise building by deep learning

  • Youqin Huang;Guanheng Ou;Jiyang Fu;Huifan Wu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.393-404
    • /
    • 2023
  • Skewness and kurtosis are important higher-order statistics for simulating non-Gaussian wind pressure series on low-rise buildings, but their predictions are less studied in comparison with those of the low order statistics as mean and rms. The distribution gradients of skewness and kurtosis on roofs are evidently higher than those of mean and rms, which increases their prediction difficulty. The conventional artificial neural networks (ANNs) used for predicting mean and rms show unsatisfactory accuracy in predicting skewness and kurtosis owing to the limited capacity of shallow learning of ANNs. In this work, the deep neural networks (DNNs) model with the ability of deep learning is introduced to predict the skewness and kurtosis on a low-rise building. For obtaining the optimal generalization of the DNNs model, the hyper parameters are automatically determined by Bayesian Optimization (BO). Moreover, for providing a benchmark for future studies on predicting higher order statistics, the data sets for training and testing the DNNs model are extracted from the internationally open NIST-UWO database, and the prediction errors of all taps are comprehensively quantified by various error metrices. The results show that the prediction accuracy in this study is apparently better than that in the literature, since the correlation coefficient between the predicted and experimental results is 0.99 and 0.75 in this paper and the literature respectively. In the untrained cornering wind direction, the distributions of skewness and kurtosis are well captured by DNNs on the whole building including the roof corner with strong non-normality, and the correlation coefficients between the predicted and experimental results are 0.99 and 0.95 for skewness and kurtosis respectively.

Comparison of Assessment method of Blast Vibration (발파 진동 평가의 문제점과 개전방안)

  • Chang, Seo-Il;Lee, Jae-Won;Kim, Hyung-Kon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.553-558
    • /
    • 2002
  • The blast vibration can generate occupants dissatisfy as well as damage of physics nearby building. Then blast vibration estimation issue important problems. But, now blast vibration prediction inside-outside country not established objective method to express magnitude of vibration according to blast number. In this study, Our propose show our country problem of blast vibration about blast vibration measurement and this problems be able to find improve method.

  • PDF

Prediction of Cavitation Intensity in Pumps Based on Propagation Analysis of Bubble Collapse Pressure Using Multi-Point Vibration Acceleration Method

  • Fukaya, Masashi;Ono, Shigeyoshi;Udo, Ryujiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.

An Experimental Study on the Vertical Vibration Transfer according to Shear Wall Building Structures due to Exciting Vibration Forces (전단벽식 건축구조물의 수직진동 전달특성에 관한 실험연구)

  • Chun Ho-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.159-166
    • /
    • 2005
  • The vibration on building structures due to exciting vibration forces has been studied only for the vibration level on existing buildings. Recently, several researches have been performed on the prediction of vertical vibration on structures by using an analytical method. However, these studies have been focused on mainly the vibration analysis through analytical modeling of structures. This study aims to investigate the characteristics of vertical vibration transfer in terms of the directions of transfer(upward transfer and downward transfer) on the shear wall building structures due to 2 type vibration forces. In order to examine the characteristics of vertical vibration transfer, the mode analysis and the impact experiment were conducted several times on one building structure. The results of this study suggest that the characteristics of vertical vibration transfer are different in terms of the directions of transfer.

  • PDF

Characteristics of Vertical Vibration Transfer according to RC Structure Systems (RC조 건축물의 구조시스템에 따른 수직진동 전달 특성 비교)

  • Chun, Ho-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.196-201
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions on the rahmen building structures and the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the heel-drop excitation experiments were conducted several times on the two type building structures. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vortical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs and excitation forces and are effected the shear wall on the path of the vibration transfer.

  • PDF

A Study on the Characteristics of Transferring Vibration and Effect of Nearby-Building Induced by the High-speed Train in Operation (고속철도 운행에 의한 진동전달특성 및 인접건물에 미치는 영향에 관한 연구)

  • 배동명;신창혁;최철은;박상곤;백용진
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.354-364
    • /
    • 2001
  • The vibration induced by high speed train running on rail is dealt with as an environmental problem. The train induced vibration is characterized by moving loads at specific frequencies and soil conditions. In fact, it is predicted that the vibration sources are involved the wheel distance, number of cars, speed of operation, drift of rails, structural born vibration, etc. In this paper the characteristics of transferring vibration induced by the high-speed train in operation is discussed. Field measurements was conducted at region from Chungnam Yungj So-jung-myan to Chungbuk Chungwon hyun-do-myun. In the near future. these data will be used as the fundamental data for establishment of the countermeasure for vibrational reduction of high speed train using the results of the field measurements and quantitative prediction of the vibration level

  • PDF

Vibration Characteristics and Prediction of Railroad Track Supporting Structures (궤도지지구조물의 진동특성과 예측)

  • 황선근;엄기영;고태훈
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.51-61
    • /
    • 2000
  • In this study, field measurements of vibration on the structures supporting railroad track were performed. The vibration data obtained were analyzed to find out any correlation between its magnitude and several factors such as type of bridges, distance from the track, type of train, frequency characteristics, etc. As a result, the magnitude of vibration turned out to be the highest in the steel bridge, the concrete bridge and steel-concrete combined bridge were the next in descending order. It was also found that the dynamic characteristics of ground were the most important factors among several affecting vibration near by the railroad track. And the empirical ground vibration estimation equation for estimating ground vibration was developed. The proposed equation with respect to distances from the railroad could be easily used for the estimation of ground vibration at the residential areas nearby the track.

  • PDF

Prediction and Reduction of Transient Vibration of Piping System for a Rotary Compressor (공조용 압축기 배관계의 과도진동 예측 및 저감설계)

  • Ryu, Sang-Mo;Jeong, Weui-Bong;Han, Hyung-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.733-740
    • /
    • 2011
  • This paper deals with the process to identify the transient exciting force generated from a rotary compressor. The compressor was assumed to be a rigid body. The equation of motion of a rigid compressor supported by three mounts was derived with 6 degree-of-freedom. The exciting forces at the center of mass of the compressor were estimated from the acceleration data measured at compressor shell. Compressor-pipe system was modeled numerically. The accelerations of compressor and pipe were predicted numerically by using the estimated exciting force. A new shape of pipe model was proposed to reduce the vibration. In the prediction by the method in this paper, the maximum acceleration of the pipe could be reduced by 53.7 % at the steady-state and by 12 % at the transient process. In the real experiments, the maximum acceleration of the pipe was reduced by 54.2 % at steady-state and 14.7 % at the transient process. It was verified that the numerical results showed good agreement with experimental results.