• Title/Summary/Keyword: Vibration modes

Search Result 1,275, Processing Time 0.023 seconds

Characteristics of Friction Noise with Changes of the Natural Frequencies in the Reciprocating Motion (왕복운동에서의 고유주파수 변화에 따른 마찰소음 특성 연구)

  • Choi, Hoil;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2014
  • Experimental study is conducted for investigating the characteristics of friction-induced noise with respect to the variation of system geometry. In this study, a vertically fixed rod is in contact with the reciprocating plate which is controlled by the step motor. Friction noise is generated during the reciprocating motion due to the frictional contact between the plastic pin and the aluminum plate. The frequencies of the friction noise are changed when the height of the rod varies. However, it is found that the vibration modes involved in the friction noise are not changed. It implies that the unstable modes remain unstable regardless of the change of the system geometry, and thus, there are the certain mode shapes which are likely to produce friction noise.

LP Compressor Blade Vibration Characteristics at Starting Conditions of a 100 MW Heavy-duty Gas Turbine

  • Lee, An-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.895-903
    • /
    • 2004
  • In this paper are presented the blade vibration characteristics at the starting conditions of the low pressure multistage axial compressor of heavy-duty 100 MW gas turbine. Vibration data have been collected through strain gauges during aerodynamic tests of the model compressor. The influences of operating modes at the starting conditions are investigated upon the compressor blade vibrations. The exciting mechanisms and features of blade vibrations are investigated at the surge, rotating stall, and buffeting flutter. The influences of operating modes upon blade dynamic stresses are investigated for the first and second stages. It is shown that a high dynamic stress peak of 120 MPa can occur in the first stage blades due to resonances with stall cell excitations or with inlet strut wake excitations at the stalled conditions.

Automated data interpretation for practical bridge identification

  • Zhang, J.;Moon, F.L.;Sato, T.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.433-445
    • /
    • 2013
  • Vibration-based structural identification has become an important tool for structural health monitoring and safety evaluation. However, various kinds of uncertainties (e.g., observation noise) involved in the field test data obstruct automation system identification for accurate and fast structural safety evaluation. A practical way including a data preprocessing procedure and a vector backward auto-regressive (VBAR) method has been investigated for practical bridge identification. The data preprocessing procedure serves to improve the data quality, which consists of multi-level uncertainty mitigation techniques. The VBAR method provides a determinative way to automatically distinguish structural modes from extraneous modes arising from uncertainty. Ambient test data of a cantilever beam is investigated to demonstrate how the proposed method automatically interprets vibration data for structural modal estimation. Especially, structural identification of a truss bridge using field test data is also performed to study the effectiveness of the proposed method for real bridge identification.

A Study on the Improved Seismic Analysis of Multistory Shear Wall Buildings (전단벽식 고층건물의 내진해석에 관한 연구)

  • 이준교;이근홍;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.267-272
    • /
    • 1993
  • Currently about 60 contries in the world require earthquake resistant structural design in case of multistory building constructions. In these cases the equivalent lateral force procedure is commonly adopted because of its simplicity and convenience. This procedure, however, is developed based mainly on the first vibration mode response of building structure. The dynamic analysis of tall building shows that the effect of higher modes of vibration on the response of the building can not be neglected. In this paper, the effect of higher modes of vibration on seismic response is evaluated through modal analysis of tall building structures. On the basis of evaluation results, an improved procedure is to be proposed for the extended application of the equivalent lateral force procedure.

  • PDF

Finite Element Analysis of Two Rectangular Plates Coupled with Fluid (유체와 연성된 두 직사각형 평판의 유한요소 해석)

  • 유계형;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.668-671
    • /
    • 1997
  • In order to investigate the vibration characteristics of fluid-structure interaction problem, we modeled two identical rectangular plates coupled with bounded fluid. The fixed boundary condition along the plate edges and an ideal fluid were assumed. A commercial computer code, ANSYS was used to perform finite element analysis and FEM solutions were compared with the experimental results to modify the finite element model. As a result, comparison of FEM and experiment showed good agreement, and the transverse vibration modes, in-phase and out of-phase. were observed alternately in the tluid-coupled system. The effects of distance between two rectangular plates and width to length ratio on the fluid-coupled natural frequency were investigated. And it was found that the ormalized natural frequency of the fluid-coupled system monotonically increased with an increase in the number of modes.

  • PDF

Flutter Instability of a Discontinuous Cantilevered Pipe Conveying Fluid (유동유체에 의한 불연속 외팔 파이프의 플러터 불안정)

  • 류봉조;류시웅;임경빈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.273-277
    • /
    • 2004
  • This paper deals with the dynamic stability and vibration of a non-uniform cantilevered pipe conveying fluid. The present model consists of two segments with different cross-sections. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The critical flow velocities and stability maps of the pipe are obtained by changing step ratios, mass ratios and internal damping parameters of the pipe. Finally, the vibrational modes associated with flutter are shown graphically.

  • PDF

Modal Tuning of HDD suspension system (HDD 서스펜션의 모달 튜닝)

  • Kim, Dong-Woohn;Park, Young-Phil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1583-1588
    • /
    • 2000
  • The dynamic characteristics of a HDD suspension system are investigated by finite element analysis and experimental modal analysis. A finite element model of the suspension Type850 was developed for unloaded case. The calculated vibration modes were compared with measurements and agree well in shape and frequency except some local modes. Local thickness and Young's modulus of the finite element model are updated by modal tuning method to develop the precise FE model. A sensitivity matrix of the natural frequencies for some design variables was calculated using finite difference method. Most natural frequencies calculated by the tuned FE model coincide with the measurements and the errors between them are less than 2%.

  • PDF

Vibration of Initially Stressed Beam with Discretely Spaced Multiple Elastic Supports

  • Park, Nam-Gyu;Lee, Seong-Ki;Kim, Hyeong-Koo;Park, Ki-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.733-741
    • /
    • 2004
  • Vibration behavior of an initially stressed beam on discretely spaced multiple elastic supports has been studied and a theoretical formulation of the system is derived using the variational principle. Unlike beams on an elastic foundation, discretely spaced supports can distort the beam mode shapes when the supports have rather large stiffness, i.e. usually expected beam modes cannot be obtained, but rather irregular mode shapes are observed. Conversely, irregular modes can be recovered by changing initial stress. Since support location is closely associated with the dynamic characteristics, this work also discusses eigenvalue sensitivity with respect to the support position and some numerical examples are investigated to illustrate the above findings.

Eigenvalue Branches and Flutter Modes of a Discontinuous Cantilevered Pipe Conveying Fluid (유동유체에 의한 불연속 외팔 파이프의 고유치 분기와 플러터 모드)

  • 류시웅;임경빈;류봉조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1041-1047
    • /
    • 2004
  • This paper deals with the dynamic stability and vibration of a discontinuous cantilevered Pipe conveying fluid. The present model consists of two segments with different cross-sections. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The critical flow velocities and stability maps of the pipe are obtained by changing ratios of second area moment of inertia and mass ratios. Finally, the vibrational modes associated with flutter are shown graphically.

Brake Squeal Analysis with Respect to Caliper Contact Stiffness (캘리퍼 접촉강성을 고려한 브레이크 스퀼 해석)

  • Nam, Jaehyun;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.717-724
    • /
    • 2013
  • The present study provides the numerical results in association with caliper stiffness and friction curve. From the numerical results, it is concluded that the pad vibration modes with dominant displacement in rotation direction is sensitive in the flutter instability. Particularly, the pad rigid mode is shown to become the squeal mode when the caliper stiffness is introduced in brake squeal model. Therefore, the caliper contact stiffness between the pad and caliper is expected to contribute to the squeal modes of the brake pad.