• Title/Summary/Keyword: Vibration modes

Search Result 1,275, Processing Time 0.024 seconds

VIRTUAL PREDICTION OF A RADIAL-PLY TIRE'S IN-PLANE FREE VIBRATION MODES TRANSMISSIBILITY

  • CHANG Y. P.;EL-GINDY M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • A full nonlinear finite element P185/70Rl4 passenger car radial-ply tire model was developed and run on a 1.7-meter-diameter spinning test drum/cleat model at a constant speed of 50 km/h in order to investigate the tire transient response characteristics, i.e. the tire in-plane free vibration modes transmissibility. The virtual tire/drum finite element model was constructed and tested using the nonlinear finite element analysis software, PAM-SHOCK, a nonlinear finite element analysis code. The tire model was constructed in extreme detail with three-dimensional solid, layered membrane, and beam finite elements, incorporating over 18,000 nodes and 24 different types of materials. The reaction forces of the tire axle in vertical (Z axis) and longitudinal (X axis) directions were recorded when the tire rolled over a cleat on the drum, and then the FFT algorithm was applied to examine the transient response information in the frequency domain. The result showed that this PI 85/70Rl4 tire has clear peaks of 84 and 45 Hz transmissibility in the vertical and longitudinal directions. This result was validated against more than 10 previous studies by either theoretical or experimental approaches and showed excellent agreement. The tire's post-impact response was also investigated to verify the numerical convergence and computational stability of this FEA tire model and simulation strategy, the extraordinarily stable scenario was confirmed. The tire in-plane free vibration modes transmissibility was successfully detected. This approach was never before attempted in investigations of tire in-plane free vibration modes transmission phenomena; this work is believed to be the first of its kind.

Local and Normal Modes of OH Stretching Vibration in Hydrogen-Bonded Water Molecules (수소 결합한 물 분자에서 OH 신축 진동의 국소모드와 정규모드)

  • Kwon, Seeun;Yang, Mino
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.350-353
    • /
    • 2020
  • The validity of the calculation method based on the local mode in hydrogen-bonded water molecules was investigated by comparing the frequencies of the local and normal modes of OH stretching vibration in water molecules. By calculating a monomer, dimer, and trimer of water molecules using a quantum chemical ab initio theory, we examined how the frequencies of the local and normal modes and the anharmonicity of local modes vary with molecular cluster size. It was shown that, as the number of molecules increases from monomer to trimer, the anharmonicity of OH bonds increases and the difference between local and normal mode frequencies decreases. This confirms that local-mode-based calculations that can easily handle the anharmonicity can be appropriate for the calculation of the OH stretching frequency of water molecules in the condensed phase.

Positive Position Feedback Control of Plate Vibrations Using Moment Pair Actuators (모멘트쌍 액추에이터가 적용된 PPF에 의한 평판의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;You, Ho-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.383-392
    • /
    • 2012
  • This paper reports the active vibration control of plates using a positive position feedback(PPF) controller with moment pair actuators. The equations of motion of the plates under a force and moment pairs are derived and the equations of PPF controllers are formulated. The numerical active control system is then achieved. The effect of the parameters - gain and damping ratio - of the PPF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the PPF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies without changing the phase behavior. The increase of the damping ratio of the PPF controller leads to decrease the magnitude of the open loop transfer function and to modify its phase characteristics, ie, system stability. Based on the behavior of the gain and the damping ratio of the controller, PPF controller for reduction of the plate vibration can be achieved. Two PPF controllers are designed with their connection in parallel to control the two modes simultaneously. Each PPF controller is tuned at the $1^{st}$ and $2^{nd}$ modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the tuned modes can be obtained.

A Study on the Vibration Characteristics of Thin Plate with Crack under Tension using ESPI (ESPI기법에 의한 하중을 받는 균열 박판의 진동 특성에 관한 연구)

  • Kim, Koung-Suk;Kang, Ki-Soo;Choi, Ji-Eun;Park, Chan-Ju;Hong, Jin-Who
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.182-188
    • /
    • 2001
  • This paper presents the vibration characteristics of a rectangular plate with $45^{\circ}$ oblique crack subjected to a uniaxial tension. The experiment is adopted by the time-average Electronic Speckle Pattern Interferometry(ESPI) method. The natural frequency and mode shape are considered accurately according to the increase of tensile load. When tensile load is zero, the vibration modes we agreed with the smooth and the $45^{\circ}$ obliquely cracked plate. But according to the increasement of load it is shown that vibration modes are extremely varied. The effects of the crack under the vibration are discussed in detail. It is indicated that the increase of load makes the variation of the frequencies and modes complicate in the range of even a small load. The results are agreed with the FEM analysis within 5%.

  • PDF

Evaluation of seismic design provisions for acceleration-sensitive non-structural components

  • Surana, Mitesh
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.611-623
    • /
    • 2019
  • A set of mid-rise bare and uniformly infilled reinforced-concrete frame buildings are analyzed for two different seismic intensities of ground-motions (i.e., 'Design Basis Earthquake' and 'Maximum Considered Earthquake') to study their floor response. The crucial parameters affecting seismic design force for acceleration-sensitive non-structural components are studied and compared with the guidelines of the European and the United States standards, and also with the recently developed NIST provisions. It is observed that the provisions of both the European and the United States standards do not account for the effects of the period of vibration of the supporting structure and seismic intensity of ground-motions and thereby provides conservative estimates of the in-structure amplification. In case of bare frames, the herein derived component amplification factors for both the design basis earthquake and the maximum considered earthquake exceeds with their recommended values in the European and the United States standards for non-structural components having periods in vicinity of the higher modes of vibration, whereas, in case of infilled frames, component amplification factors exceeds with their recommended value in the European standard for non-structural components having periods in vicinity of the fundamental mode of vibration, and only for the design basis earthquake. As a consequence of these observations, as well as capping on the design force (in case of United states standard and NIST provisions), in case of the design basis earthquake, the combined amplification factor is underestimated for non-structural components having periods in vicinity of the higher modes of vibration of bare frames, and also for non-structural components having periods in vicinity of the fundamental mode of vibration of infilled frames. At the maximum considered earthquake demand, excepting non-structural components having periods in vicinity of the higher modes of vibration of bare frames, all provisions generally provide conservative estimates of the design floor accelerations.

Estimation of bridge displacement responses using FBG sensors and theoretical mode shapes

  • Shin, Soobong;Lee, Sun-Ung;Kim, Yuhee;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.229-245
    • /
    • 2012
  • Bridge vibration displacements have been directly measured by LVDTs (Linear Variable Differential Transformers) or laser equipment and have also been indirectly estimated by an algorithm of integrating measured acceleration. However, LVDT measurement cannot be applied for a bridge crossing over a river or channel and the laser technique cannot be applied when the weather condition is poor. Also, double integration of accelerations may cause serious numerical deviation if the initial condition or a regression process is not carefully controlled. This paper presents an algorithm of estimating bridge vibration displacements using vibration strains measured by FBG (Fiber Bragg Grating) sensors and theoretical mode shapes of a simply supported beam. Since theoretically defined mode shapes are applied, even high modes can be used regardless of the quality of the measured data. In the proposed algorithm, the number of theoretical modes is limited by the number of sensors used for a field test to prevent a mathematical rank deficiency from occurring in computing vibration displacements.89The proposed algorithm has been applied to various types of bridges and its efficacy has been verified. The closeness of the estimated vibration displacements to measured ones has been evaluated by computing the correlation coefficient and by comparing FRFs (Frequency Response Functions) and the maximum displacements.

Size dependent axial free and forced vibration of carbon nanotube via different rod models

  • Khosravi, Farshad;Simyari, Mahdi;Hosseini, Seyed A.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.157-172
    • /
    • 2020
  • The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.

CHARACTERISTICS OF STRUCTURAL RESPONSE INDUCED BY SUBWAY OPERATION (지하철 진동에 의한 구조물의 거동특성)

  • 김희철;이동근;정건영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.120-127
    • /
    • 1994
  • Noise and vibration induced by subway operation are one of the major factor which annoy residents living near railway tracks. While lateral vibration is a major factor in analyzing seismic effect of the structure, vertical vibration became a major concern in considering the subway induced vibration because relatively smaller energy affects only nearby areas than that of earthquake. A characteristics of structural response induced by subway operation has been studied with different total height of the building and different number of spans. Also the frame with different span length has been studied. As the numbers of degrees freedom increase the higher mode effect on vertical vibration increases. Accordingly, the total affecting vertical modes are distributive as the numbers of degrees of freedom increase. Though the total degree of freedom increases, only some of the dominant modes actively affects to the vertical response of the structure. A frame with the number of equal spans could be analyzed by replacing the whole frame as one when we want to predict the response of the vertical vibration. Also it has been found that the seperate frame analysis will give little different result when adjacent span is relatively longer than others.

  • PDF

Stability Analysis of Transverse Vibration of a Spinning Disk with Speed Fluctuation (속도변동성분을 갖는 회전디스크의 횡진동 안정성 해석)

  • 신응수;이기녕;신태명;김옥현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • This paper intends to investigate the effects of speed fluctuation caused by the cogging torque in permanent magnetic motors on the stability of the transverse vibration for a spinning disk. Based on the Kirchhoff\`s plate theory and the assumed mode methods, a set of discretized equations of motion were derived for an annular disk rotating with a harmonically varying speed. Then, a perturbation method using the multiple time scales was employed and stability boundaries were determined explicitly in terms of the magnitude and frequency of speed fluctuation, a nominal sped and the modal characteristics of the disk. It is found that parametric resonance occurs at several speed ranges and a single mode or a combination of two modes are involved to cause instability. It is also observed that unstable regions become broadened as the spinning speed increases or two modes are combined in parametric instability. As numerical simulations, stability analysis of a conventional CD-ROM drive was performed. Results of this work can e used as guidelines for motor design and operations with low vibration.