• 제목/요약/키워드: Vibration modes

검색결과 1,275건 처리시간 0.023초

시간 평균 홀로그래픽 간섭계를 이용한 환형 평판의 자유 진동 연구 (Free Vibration Analysis of Annular Sector Plates Psing Pime Average Holographic Interferometry)

  • 이기백;김정훈;나종문
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.414-421
    • /
    • 1996
  • The study of the vibration characteristics of annular sector plates which are clamped along their inner circumferential edge is important for structural engineers. The present analysis consists of experimental method and numerical method. The experimental method using time-average holographic interferometry is obtained vibration modes and frequencies. The experimental results are verified by a numerical method using F.E.M. The important aspects of the present paper is the dependence of the natural frequencies and the mode shape on the annular area changing sector angle. The radial nodal lines converge to the center of the plate. As increasing sector angle, the radial modes are predominant.

  • PDF

Analysis and simulation of multi-mode piezoelectric energy harvesters

  • Zhang, Ying;Zhu, Binghu
    • Smart Structures and Systems
    • /
    • 제9권6호
    • /
    • pp.549-563
    • /
    • 2012
  • Theoretical analysis is performed on a multi-mode energy harvester design with focus on the first two vibration modes. Based on the analysis, a modification is proposed for designing a novel adaptive multi-mode energy harvester. The device comprises a simply supported beam with distributed mass and piezoelectric elements, and an adaptive damper that provides a 180 degree phase shift for the motions of two supports only at the second vibration mode. Theoretical analysis and numerical simulations show that the new design can efficiently scavenge energy at the first two vibration modes. The energy harvesting capability of the multi-mode energy harvester is also compared with that of a cantilever-based energy harvester for single-mode vibration. The results show that the energy harvesting capacity is affected by the damping ratios of different designs. For fixed damping ratio and design dimensions, the multi-mode design has higher energy harvesting capacity than the cantilever-based design.

Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.641-651
    • /
    • 2019
  • The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second moment is derived based on the $It{\hat{o}}$ stochastic differential rule. The stochastically and deterministically parameter-excited vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance amplitude.

System identification of highway bridges from ambient vibration using subspace stochastic realization theories

  • Ali, Md. Rajab;Okabayashi, Takatoshi
    • Earthquakes and Structures
    • /
    • 제2권2호
    • /
    • pp.189-206
    • /
    • 2011
  • In this study, the subspace stochastic realization theories (SSR model I and SSR model II) have been applied to a real bridge for estimating its dynamic characteristics (natural frequencies, damping constants, and vibration modes) under ambient vibration. A numerical simulation is carried out for an arch-type steel truss bridge using a white noise excitation. The estimates obtained from this simulation are compared with those obtained from the Finite Element (FE) analysis, demonstrating good agreement and clarifying the excellent performance of this method in estimating the structural dynamic characteristics. Subsequently, these methods are applied to the vibration induced by both strong and weak winds as obtained by remote monitoring of the Kabashima bridge (an arch-type steel truss bridge of length 136 m, and situated in Nagasaki city). The results obtained with this experimental data reveal that more accurate estimates are obtained when strong wind vibration data is used. In contrast, the vibration data obtained from weak wind provides accurate estimates at lower frequencies, and inaccurate accuracy for higher modes of vibration that do not get excited by the wind of lower intensity. On the basis of the identified results obtained using both simulated data and monitored data from a real bridge, it is determined that the SSR model II realizes more accurate results than the SSR model I. In general, the approach investigated in this study is found to provide acceptable estimates of the dynamic characteristics of highway bridges as well as for the vibration monitoring of bridges.

Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations

  • Lee, So-Young;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.525-539
    • /
    • 2019
  • In this study, vibration characteristics of a gravity-based caisson-foundation breakwater system are investigated for ambient and geometric parameters such as various waves, sea levels, and foundation conditions. To achieve the objective, following approaches are implemented. Firstly, operational modal analysis methods are selected to identify vibration modes from output-only dynamic responses. Secondly, a finite element model of an existing caisson-foundation breakwater system is established by using a structural analysis program, ANSYS. Thirdly, forced vibration analyses are performed on the caisson-foundation system for two types of external forces such as controlled impacts and wave-induced dynamic pressures. For the ideal impact, the wave force is converted to a triangular impulse function. For the wave flow, the wave pressure acting on the system is obtained from wave field analysis. Fourthly, vibration modes of the caisson-foundation system are identified from the forced vibration responses by combined use of the operational modal analysis methods. Finally, vibration characteristics of the caisson-foundation system are investigated under various waves, sea levels, and foundations. Relative effects of foundation conditions on vibration characteristics are distinguished from that induced by waves and sea levels.

Rolling Tire 모드해석을 위한 회전주기성분제거에 대한 연구 (The Study of harmonic peaks removal for modal analysis of Rolling tire)

  • 최정현;이상주;박주배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.409-412
    • /
    • 2005
  • Just as the vibration modes of a beam are dependent on its end constraints or boundary conditions. Vibration modes of a tire are dependent on its patch and spindle constraints. This dependence is key to understanding the dynamic properties of a tire and is apparent in various analytical and experimental investigations in the literature. One of the main task in a modal analysis is the measurement of the Frequency Response Function (FRFs). Because all the subsequent analysis is based on these FRFs, their quality is critically important in obtaining accurate modal parameter estimates. In rotating systems, FRFs are frequently contaminated by harmonic peaks related to such factors as imbalance, misalignment. This harmonic peaks appear in the FRFs as sharp spikes, which can be erroneously treated in modal curve-fitting procedures as structural modes. The harmonic peaks removal method is demonstrated by application to modal analysis on rotating tires. The results show substantial improvement in FRF quality.

  • PDF

Vibration of vehicle-bridge coupling system with measured correlated road surface roughness

  • Han, Wanshui;Yuan, Sujing;Ma, Lin
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.315-331
    • /
    • 2014
  • The present study investigated the effect of the correlation of the measured road roughness profiles corresponding to the left and right wheels of a vehicle on the vibration of a vehicle-bridge coupling system. Four sets of road roughness profiles were measured by a laser road-testing vehicle. A correlation analysis was carried out on the four roughness samples, and two samples with the strongest correlation and weakest correlation were selected for the power spectral density, autocorrelation and cross-correlation analyses. The scenario of a three-axle truck moving across a rigid-frame arch bridge was used as an example. The two selected road roughness profiles were used as inputs to the vehicle-bridge coupling system. Three different input modes were adopted in the numerical analysis: (1) using the measured road roughness profile of the left wheel for the input of both wheels in the numerical simulation; (2) using the measured road roughness profile of the right wheel for both wheels; and (3) using the measured road roughness profiles corresponding to left and right wheels for the input corresponding to the vehicle's left and right wheels, respectively. The influence of the three input modes on the vibration of the vehicle-bridge system was analyzed and compared in detail. The results show that the correlation of the road roughness profiles corresponding to left and right wheels and the selected roughness input mode both have a significant influence on the vibration of the vehicle-bridge coupling system.

Development of Automatic Reactor Internal Vibration Monitoring System Using Fuzzy Peak Detection and Vibration Mode Decision Method

  • Kang, Hyun-Gook;Seong, Poong-Hyun;Park, Heui-Youn;Lee, Cheol-Kwon;Koo, In-Soo
    • Nuclear Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.8-16
    • /
    • 1998
  • In this work a method to detect the vibrational peak and to decide the vibrational mode of detected peak for core internal vibration monitoring system which is particularly concerned on the core support barrel (CSB) and fuel assemblies is developed. Flow induced vibration and aging process in the reactor internals cause unsoundness of the internal structure. In order to monitor the vibrational status of core internal, signals from the ex-core neutron detectors are transformed into frequency domain. By analyzing transformed frequency domain signal, an analyst can acquire the information on the vibrational characteristics of the structures, i.e., vibration frequencies of each component, vibrational level, modes of vibration, and the causes of the abnormal vibration, if any. This study is focused on the development of the automated monitoring system. Several methods are surveyed to define the peaks in power spectrum and fuzzy theory is used to automatic detection of the vibrational peaks. Fuzzy algorithm is adopted to define the modes of vibration using the peak values from fuzzy peak recognition, phase spectrum, and coherence spectrum.

  • PDF

철도 차량용 알미늄 압출재의 국부진동 모드특성 (Characteristics of Local Vibration Modes of the Aluminium Extruded Panels for Rail Road Vehicles)

  • 김석현;장호식;김정헌
    • 한국철도학회논문집
    • /
    • 제4권3호
    • /
    • pp.87-93
    • /
    • 2001
  • Characteristics of the local vibration modes of an aluminium extruded panel are investigated by the finite element analysis and modal testing. Practical methods to increase the damping of the local resonances are proposed. Effects by filling urethan foam in the core cavity and by coating tar on the panel surface are compared by experiments. Modified panel structures to shift the local resonance frequency band are proposed. The results of the study are utilized to predict the severe local resonances in the aluminium extruded panels and prevent their undesirable effect on the sound insulation.

  • PDF

전개하는 막대의 종진동 해석 (Longitudinal Vibration Analysis of Deploying Rods)

  • 조은형;정진태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.625-630
    • /
    • 2000
  • In this paper, the governing equation and the boundary conditions of deploying rods are derived by using Hamilton's principle. The Galerkin method using the comparison function of the instantaneous natural modes is adopted by which the governing equation is discretized. Based on the discretized equations, the time integration analysis is performed and the longitudinal vibrations for the deploying and the retrieving velocity are analyzed.

  • PDF