• Title/Summary/Keyword: Vibration mode

Search Result 2,960, Processing Time 0.025 seconds

Experimental Analysis on Vibration of Composite Plate by Using FBG Sensor System (브래그 격자 센서 시스템을 이용한 복합재 평판 진동의 실험적 해석)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.436-441
    • /
    • 2009
  • A fiber optic sensor is prospective to be applied to structural health monitoring. Especially, a fiber Bragg grating(FBG) sensor is one of the most popular sensors for the structural health monitoring. The FBG sensor has several demodulation systems for tracking the shift of the Bragg wavelength. The dynamic bandwidth is dependent on the demodulation system. In this paper, the sensing mechanism is that the slope of the optical spectrum of FBG could be used as its sensitivity when the tunable laser shot the monochromatic laser wavelength at the highest slope point. In this technique, the high sensitivity is guaranteed even though the sensing range is limited. In an example of the application, the composite plate embedding a FBG sensor was manufactured by using an autoclave method and the above sensing mechanism was applied to the composite plate. Firstly, the natural frequencies of the plate were successfully measured by the FBG sensor during the impact hammer test. Secondly, a high-power speaker was used to force the plate to be vibrated at the specific frequency that was one of the natural frequencies. During the shaking, the FBG sensor measures the dynamic characteristics and ESPI was also used to measure the mode shape. From the two dynamic tests, the availability of the FBG sensor system and the ESPI was proven as a technique for measuring the dynamic characteristics of composite structure.

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.

Optimization of Reinforcement of Thin-Walled Structures for a Natural Frequency (고유진동수를 고려한 박판 구조물의 보강재 최적설계)

  • Lim O-Kaung;Jeong Seung-Hwan;Choi Eun-Ho;Kim Dae-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.195-202
    • /
    • 2006
  • Thin-walled structures are efficiently utilized an automobiles, aircraft, satellite and ship as well as needed light weight simultaneously. This paper presents new shape of automobile hood reinforcement that rotating parts as engine, transmission are protected by thin-walled structures. The automobile hood is concerned about the resonance occurs due to the frequency of the rotating parts. The hood must be designed by supporting the stiffness of design loads and considering the natural frequencies. Hence, it is sustained the stiffness and considered the vibration by resonance. It is deep related to ride. Therefore, the topology, shape and size optimization methods are used to design the automobile hood. Topology technique is applied to determine the layout of a structural component optimum size with maximized natural frequency by volume reduction. In this research, The optimal structure layout of an inner reinforcement of an automobile hood for the natural frequency of a designated mode is obtained by using topology optimization method. The optimum size and the optimum shape are determined by PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm.

A Study on Dynamic Behaviour of Cable-Stayed Bridge by Vehicle Load (차량하중에 의한 사장교의 동적거동에 관한 연구)

  • Park, Cheun Hyek;Han, Jai Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1299-1308
    • /
    • 1994
  • This paper is considered on the dynamic behavior and the dynamic impact coefficient on the cable-stayed bridge under the vehicle load. The method of static analysis, that is, the transfer matrix method is used to get influence values about displacements, section forces of girder and cable forces. Gotten influence values were used as basic data to analyse dynamic behavior. This paper used the transfer matrix method because it is relatively simpler than the finite element method, and calculating speed of computer is very fast and the precision of computation is high. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of cable-stayed bridge and vehicle travelling by using mode shape, which was borne from system of undamped free vibration. The solution of the uncoupled equation of motion, that is, time history of response of deflections, velocity and acceleration on reference coordinate system, is found by Newmark-${\beta}$ method, a kind of direct integral method. After the time history of dynamic response was gotten, and it was transfered to the time history of dynamic response of cable-stayed bridge by linear transformation of coordinates. As a result of this numerical analysis, effect of dynamic behavior for cable-stayed bridge under the vehicle load has varied depending on parameter of design, that is, the ratio of span, the ratio of main span length, tower height, the flexural rigidity of longitudinal girder, the flexural rigidity of tower, and the cable stiffness, investigated. Very good agreements with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

Resonance Frequency Analysis of A Baseball Bat by Impact Angle (가진 각도에 따른 야구배트의 공진주파수 분석)

  • Park, Sun-Hyang;Chung, Woo-Yang;Jung, Hwan-Hee;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.777-783
    • /
    • 2015
  • Wood is an anisotropic material that shows the changes in hardness, quality and dimensions depending on the types of cells on three cross sections, size, array and so on. It can also be used in different ways according to its use, which requires a meticulous research, in order to maximize the utilization by understanding the nature and use; and by clarifying the theory and technologies. The research on relationship among wood's physical properties, density, and elasticity of modulus have been studied in Korea and abroad, but those studies were based on correlation gained through standardized specimen. Rather, the study on complete product is rare. Moreover, the previous reports are mostly concentrating on vibration mode and batting, though the wood's physical properties as a material have not been in the main focus. Therefore, this study will carried out for analyzing MOE through figuring material property out and comparing frequency adapting to the Canadian HardMaple bat. For comparison of material properties, we studied the annual ring and density of the bat; calculated the MOE with resonance frequency and formula (ASTM C1259); and verified the repulsive force of this material. As a result, the relevance of the resonance frequency and annual ring is weak, and in comparison in the grain direction in wood, the MOE value is higher when the grain direction in wood is excited horizontally than when is excited vertically, because the material is repulsive when grain direction is horizontal.

The Imbalance Compensation in CMG ('제어모멘트자이로'의 질량불균형 보정)

  • Lee, Jong-Kuk;Song, Tae-Seong;Kang, Jeong-Min;Song, Deok-Ki;Kwon, Jun-Beom;Seo, Joong-Bo;Oh, Hwa-Suk;Cheon, Dong-Ik;Hong, Young-Gon;Lee, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.861-871
    • /
    • 2020
  • Raising the speed of the momentum wheel in the CMG increases the unintended force and torque caused by mass imbalance. This unintended force and torque should be minimized to get the better quality of satellite SAR image because they lead to the vibration of the output image. This paper shows the works on compensating the static imbalance and couple mass imbalance in the CMG wheel. First, the force and torque at the center of mass generated by the mass imbalance were predicted through M&S analysis. Second, the force and torque were estimated similarly through the M&S analysis when the measurement point was moved from the rotation center. Third, the measurement configuration for the force and torque by the mass imbalance was described. Fourth, the change of the force and torque by adding the specified mass to the momentum wheel was observed after comparing the measurements with the results of the M&S. And finally, the effect of the compensation was analyzed by comparing the force and torque before and after the correction while 24Nm class CMG was running in the standby mode.

Identification of Dynamic Characteristics Using Vibration Measurement Data of Saemangeum Mangyeong Offshore Observation Tower and Numerical Model Updating by Pattern Search Method (새만금 만경해상관측타워의 진동계측자료를 이용한 동특성 분석과 패턴서치 방법에 의한 수치해석모델 개선)

  • Park, Sangmin;Yi, Jin-Hak;Cho, Cheol-Ho;Park, Jin-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.285-295
    • /
    • 2020
  • In the case of small observation towers located at sea, it is necessary to confirm the change in dynamic characteristics due to the influence of environmental loads. In this study, the dynamic characteristics were analyzed and the numerical analysis model was designed through field dynamic response measurement on the Mangyeong Offshore Observation Tower (Mangyeong Tower) located near the Saemangeum Embankment. As a result of the measurement, the natural frequency was found to increase slowly as the tide level is lowered. In addition, it was confirmed that the same mode has two frequencies, which was judged to be a phenomenon in which the natural frequency was partially increased when the pile and the ground contacted by scouring. For numerical analysis, the upper mass, artificial fixity point, scour depth and fluid influences are reflected in the structural characteristics of the Mangyeong Tower. In addition, the model updating from the estimated natural frequency and pattern search algorithm was performed. From the model updating, it is expected that it can be applied to future studies on stability of Mangyeong Tower.

The Availability of Automobile Catalytic Convert of Copper Based on the DFT Calculations of Cu-NO Complexes (Cu-NO 복합체에 대한 DFT 계산에 따른 Cu의 자동차 촉매변환기 적합성)

  • Ha, Kwanga;Lee, Min-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.358-363
    • /
    • 2018
  • The purpose of this study is to show the possibility of using Cu catalyst in removal of $NO_x$ from automobile exhaust which is regarded as the primary source of fine dust PM2.5. The energy and the bond lengths of the three possible structures of Cu-NO complex, which is formed by binding NO molecule to Cu, and the changes in IR and Raman spectra are calculated using MPW1PW91 method on the level of 6-311(+)G(d,p) of basis sets with Gaussian 09 program. As a result, the enthalpy of formation of the Cu-NO complexes are obtained as ${\Delta}H=104.89$, 91.98, -127.48 kJ/mol for the linear, bent, and bridging forms of them, respectively. And the bond lengths between N and O in NO complexes, which becomes longer than NO molecule, indicates that O is easily reduced from Cu-NO. In addition, the Cu-NO complexes using Cu catalyst can be easily measured by infrared or Raman spectroscopy because in the IR and Raman spectra of the NO and Cu-NO complexes the positon and the intensity of bands are definitely different in each vibration mode.

On the Free Vibration Analysis of Thin-Walled Box Beams having Variable Cross-Sections (단면형상이 변하는 박판보의 진동해석에 관한 연구)

  • Lee, Gi-Jun;Sa, Jin-Yong;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.111-117
    • /
    • 2017
  • In this paper, a local deformation effect in thin-walled box beams is investigated via a finite element modal analysis. The analysis is carried out for single-cell and multi-cell box beam configurations. The single-cell box beam with and without a neck, which mimics a simple wind-turbine blade, is analyzed first. The results obtained by shell elements are compared to those of one-dimensional(1D) beam elements. It is observed that the wall thickness plays a crucial role in the natural frequencies of the beam. The 1D beam analysis deviates from the shell analysis when the wall thickness is either thin or thick. The shell modes(local deformations) are dominant as it becomes thin, whereas the shear deformation effects are significant as it does thick. The analysis is extended to the single-cell box beam with a neck, in which the shell modes are confined to near the neck. Finally the multi-cell box beam with a taper, which is quite similar to real wind-turbine blade configuration, is considered to investigate the local deformation effect. The results reveal that the 1D beam analysis cannot match with the shell analysis due to the local deformation, especially for the lagwise frequencies. There are approximately 5~7% errors even if the number of segments is increased.

A study on the metamictization and color change in zircon by spectroscopic analysis (분광분석을 통한 지르콘의 메타믹상태와 색상 변화 분석)

  • Kim, Seong-Ki;Ahn, Yong-Kil;Seo, Jin-Gyo;Kim, Jong-Gun;Park, Jong-Wan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.12-20
    • /
    • 2010
  • Metamictization and color change in zircons from Cambodia and Tanzania were investigated. Elements analysis to detect radioactivity of elements such as U and Th, and spectroscopic analysis using UV-VIS and Fourier transform infrared spectroscopy were performed. According to the UV-VIS spectroscopic analysis, it was perceived that many and high intense absorption peaks appeared in blue and colorless zircons, while less and low intense absorption peaks appeared in uranium contained green and yellow zircons. It was found that those stones have made progress to the metamictization. After heat treatment, we could detect opposite results. As the results of FTIR spectroscopy analysis, in the metamict green and yellow zircon, it is showed that 3-phonon combination mode bands of $[SiO_4]^{4-}$ internal vibration in the region of 3100~3400 $cm^{-1}$ are broad and some of them disappear. However, the disappeared bands are observed again due to restored crystal lattice by the heat treatment. Also, $U^{4+}$ peaks that can detect the uranium content in zircon appears at near 4800 $cm^{-1}$ in the green and yellow samples. From this investigation, we could observe the metamictization effect and color change in uranium-bearing zircon by heat treatment using spectroscopic analysis.