• Title/Summary/Keyword: Vibration method

검색결과 8,876건 처리시간 0.035초

Study on Cavitation Noise Predictions for an Elliptic Wing (타원형 날개에 대한 공동소음 예측 연구)

  • Jeong, Seung-Jin;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Park, Il-Ryong;Seol, Han-Shin;Kim, Min-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제25권6호
    • /
    • pp.757-764
    • /
    • 2019
  • Depressurization occurs around underwater objects moving at high speeds. This causes cavitation nuclei to expand, resulting in cavitation. Cavitation is accompanied by an increase in noise and vibration at the site, particularly in the case of thrusters, and this has a detrimental ef ect on propulsion performance. Therefore, predicting cavitation is necessary. In this study, an analytical method for cavitation noise is developed and applied to an elliptic wing. First, computational fluid dynamics are performed to obtain information about the flow fields around the wing. Then, through the cavitation nuclei density function, number of cavitation nuclei is calculated using the initial radius of the nuclei and nuclei are randomly placed in the upstream with large pressure drop around the wing tip. Bubble dynamics are then applied to each nucleus using a Lagrangian approach for noise analysis and to determine cavitation behavior. Cavitation noise is identified as having the characteristics of broadband noise. Verification of analytical method is performed by comparing experimental results derived from the large cavitation tunnel at the Korea Research Institute of Ships & Ocean Engineering.

Optimization of Reinforcement of Thin-Walled Structures for a Natural Frequency (고유진동수를 고려한 박판 구조물의 보강재 최적설계)

  • Lim O-Kaung;Jeong Seung-Hwan;Choi Eun-Ho;Kim Dae-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제19권2호
    • /
    • pp.195-202
    • /
    • 2006
  • Thin-walled structures are efficiently utilized an automobiles, aircraft, satellite and ship as well as needed light weight simultaneously. This paper presents new shape of automobile hood reinforcement that rotating parts as engine, transmission are protected by thin-walled structures. The automobile hood is concerned about the resonance occurs due to the frequency of the rotating parts. The hood must be designed by supporting the stiffness of design loads and considering the natural frequencies. Hence, it is sustained the stiffness and considered the vibration by resonance. It is deep related to ride. Therefore, the topology, shape and size optimization methods are used to design the automobile hood. Topology technique is applied to determine the layout of a structural component optimum size with maximized natural frequency by volume reduction. In this research, The optimal structure layout of an inner reinforcement of an automobile hood for the natural frequency of a designated mode is obtained by using topology optimization method. The optimum size and the optimum shape are determined by PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm.

Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller (진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향)

  • Roh, Han-Sung
    • International Journal of Highway Engineering
    • /
    • 제3권4호
    • /
    • pp.127-136
    • /
    • 2001
  • To increase the structural integrity of concrete box culvert good compaction by the dynamic compaction roller with bi9 capacity is as effective as good backfill materials. It is needed for effective compaction that a compaction roller closes to concrete structure with high frequency. However structural distress of the culvert could be occur due to the excessive earth pressure by great dynamic compaction load. To investigate the characteristics of Induced stress by compaction, a box culvert was constructed with changing cushion materials and compaction methods. Two types of cushion material such as tire rubber chip and EPS(Expanded Polystyrene) were used as cushion panels and they are set on the culverts before backfill construction. Laboratory test result of cushion material says that the value of dynamic elastic modulus of rubber is lesser than that of EPS. On the other hand, material damping of rubber material is greater than that of EPS. In most case, dynamic compaction rollers with 10.5 ton weights were used and vibration frequency was applied 30Hz for the great compaction energy. This paper presents the main results on the characteristics of dynamic earth pressures during compaction. The amounts of induced dynamic pressures$(\Delta\sigma\;h)$ by compaction are affected with construction condition such as compaction frequency, depth of pressure cell, distance between roller and the wall of culvert and roller direction. Based on the measured values dynamic lateral pressure on the culverts, it could be said that orthogonal direction of roller to the length of culvert is more effective to compaction efficiency than parallel direction.

  • PDF

Analysis of the under Pavement Cavity Growth Rate using Multi-Channel GPR Equipment (멀티채널 GPR 장비를 이용한 도로하부 공동의 크기 변화 분석)

  • Park, Jeong Jun;Kim, In Dae
    • Journal of the Society of Disaster Information
    • /
    • 제16권1호
    • /
    • pp.60-69
    • /
    • 2020
  • Purpose: Cavity growth process monitoring is to periodically monitor changes in common size and topography for general and observational grades to predict the rate of common growth. The purpose of this study is to establish a systematic cavity management plan by evaluating the general and observational class community in a non-destructive method. Method: Using GPR exploration equipment, the acquired surface image and the surrounding status image are analyzed in the GPR probe radargram in depth, profile, and cross section of the location. The exact location is selected using the distance and surrounding markings shown on the road surface of the initial detection cavity, and the test cavity is analyzed by calling the radar at the corresponding location. Result: As a result of monitoring tests conducted at a cavity 30 sites of general and observation grade, nine sites have been recovered. Changes in scale were seen in 21 cavity locations, and changes in size and grade occurred in 13 locations. Conclusion: The under road cavity is caused by various causes such as damage to the burial site, poor construction, soil leakage caused by groundwater leakage, waste and ground vibration. Among them, indirect factors could infer the effects of groundwater and localized rainfall.

A Process Optimization of HVOF on ALBC3 by Experiments Design (실험계획법을 이용한 ALBC3에 대한 고속화염용사의 최적 공정 설계)

  • Kim, Young-Moon;Lim, Byung-Chul;Kim, Min-Tae;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제17권4호
    • /
    • pp.448-453
    • /
    • 2016
  • Erosion and abrasion caused by cavitation damage occur in fluid equipment, such as ships or impellers. Similarly, the equipment damage from noise and vibration can shorten its life. This study analyzed the importance of the parameter characteristics of the process optimization of HVOF (High Velocity Oxygen Fuel spraying), which is generally used in a variety of industries for enhancing the resistibility from the cavitation phenomenon. The surface of the ALBC3 substrate was coated with an amorphous powder as a filler metal according to the experimental design using the Taguchi method, and then the characteristics with each parameter were analyzed using a porosity measurement test. The optimal process conditions was a combustion pressure of 80psi, coating distance of 270mm, gun speed of 200mm/s, and powder feed rate of 25g/min as a result of the HVOF coating by applying the experimental design. The combustion pressure, coating distance and powder feed rate were more than 25% and indicated a similar contribution rate, but the contribution rate of the gun speed was 19%, which was slightly less than the others. The contribution rate with each parameter was only slightly significant. On the other hand, all four parameters were found to be important in the contribution rate aspects of the HVOF coating process.

A Study of Theoretical Methods for Estimating Void Ratio Based on the Elastic Wave Velocities (탄성파 속도를 이용한 간극비 산출 식의 고찰)

  • Lee, Jong-Sub;Park, Chung-Hwa;Yoon, Sung-Min;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • 제29권2호
    • /
    • pp.35-45
    • /
    • 2013
  • The void ratio is an important parameter for reflecting the soil behavior including physical property, compressibility, and relative density. The void ratio can be obtained by laboratory test with extracted soil samples. However, the specimen has a possibility to be easily disturbed due to the stress relief when extracting, vibration during transportation, and error in experimental process. Thus, the theoretical equations have been suggested for obtaing the void ratio based on the elastic wave velocities. The objective of this paper is to verify the accuracy of the proposed analytical solution through the error norm. The paper covers the theoretical methods of Wood, Gassmann and Foti. The elastic wave velocity is determined by the Field Velocity Probe in the southern part of Korean Peninsular. And the rest parameters are assumed based on the reference values. The Gassmann method shows the high reliability on determining the void ratio. The error norm is also analyzed as substitution of every parameter. The results show every equation has various characteristics. Thus, this paper may be widely applied for obtaining the void ratio according to the field condition.

A Study on the Improvement of Misfire Detection Method with Vibration by using the Weight Factor (후진동이 나타나는 실화 진단 방법에서 가중치를 이용한 성능 향상에 대한 연구)

  • Lim Jihoon;Lee Taeyeon;Kim Ealgoo;Hong Sungrul;Sung Jinho;Park Jaehong;Yoon Hyungjin;Park Jinseo;Kim Dongsun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제13권4호
    • /
    • pp.74-80
    • /
    • 2005
  • This paper presents a misfire monitoring method by using the weight factor. According to OBD II(On-Board Diagnostics) regulations of the CARB (California Air Resources Board), an ECU (Electronic Control Unit) should detect misfires which occur in the internal combustion engine. A misfire is 1311owe4 by post-oscillations for short duration. Sometimes, the amplitude of oscillations may be as high as misfire and can be falsely detected as another misfire. To prevent this, the software designers do not attempt to detect another misfire for this short duration, during which the post oscillations exist. Because of this, ECU does not detect all the misfires and hence, the unstable state of automobile cannot be detected. If this happens for a long time, automobile may get damaged. To solve these problems, this paper suggests a new algorithm to detect misfire by using weighting factor Weighting factor is a concept to distinguish the misfire with the post oscillation and to improve the detection rate. This value of weighting factor is used for counting the misfire. This paper also shows the result of experiment done on a automobile using this software. The software is implemented using ASCET-SD which is preferred in the design of engine control. This paper's result show the possibility of improving the misfire detection by implementing this algorithm.

Improvement of Altitude Measurement Algorithm Based on Accelerometer for Holding Drone's Altitude (드론의 고도 유지를 위한 가속도센서 기반 고도 측정 알고리즘 개선)

  • Kim, Deok Yeop;Yun, Bo Ram;Lee, Sunghee;Lee, Woo Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제6권10호
    • /
    • pp.473-478
    • /
    • 2017
  • Drones require altitude holding in order to achieve flight objectives. The altitude holding of the drone is to repeat the operation of raising or lowering the drone according to the altitude information being measured in real-time. When the drones are maintained altitude, the drone's altitude will continue to change due to external factors such as imbalance in thrust due to difference in motor speed or wind. Therefore, in order to maintain the altitude of drone, we have to exactly measure the continuously changing altitude of the drone. Generally, the acceleration sensor is used for measuring the height of the drones. In this method, there is a problem that the measured value due to the integration error accumulates, and the drone's vibration is recognized by the altitude change. To solve the difficulty of the altitude measurement, commercial drones and existing studies are used for altitude measurement together with acceleration sensors by adding other sensors. However, most of the additional sensors have a limitation on the measurement distance and when the sensors are used together, the calculation processing of the sensor values increases and the altitude measurement speed is delayed. Therefore, it is necessary to accurately measure the altitude of the drone without considering additional sensors or devices. In this paper, we propose a measurement algorithm that improves general altitude measurement method using acceleration sensor and show that accuracy of altitude holding and altitude measurement is improved as a result of applying this algorithm.

Bearing Behavior Characteristics of Pressure Penetrating Steel Pipe Pile Under Compression Load (압축하중을 받는 압입강관말뚝의 지지거동 특성)

  • Kwon, Ohkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • 제16권7호
    • /
    • pp.5-13
    • /
    • 2015
  • The pressure penetrating steel pipe pile method which can be constructed in a narrow space using the hydraulic jack is used on the foundation reinforcement, extension of the structure and basement, restoration of the differential settlement etc.. This method is possible to construct in narrow areas and low story height, the non-noise and non-vibration works, and it is possible for the construction site to be clean without slime. And it is possible to confirm the bearing capacity of pile due to penetrating the pile with the compression load of hydraulic jack. In this study, the static load test with the load-transfer test was carried out to investigate the bearing behavior characteristics of the pressure penetrating steel pipe pile. Four series of static load test were executed to investigate the variation of bearing behavior of the pressure penetrating steel pipe pile. As a result of these tests, the allowable load of the pressure penetrating steel pipe was evaluated more than 637 kN, and the shaft resistance corresponding to 81~86% of each applied load was mobilized with only a small portion of the base resistance acting. And it was also evaluated that the unit skin friction was mobilized to maximum value after two months.

Development of High Precision Fastening torque performance Nut-runner System (고정밀 체결토크 성능 너트런너 시스템 개발)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제20권4호
    • /
    • pp.35-42
    • /
    • 2019
  • Nut fasteners that require ultra-precise control are required in the overall manufacturing industry including electronic products that are currently developing with the automobile industry. Important performance factors when tightening nuts include loosening due to insufficient fastening force, breakage due to excessive fastening, Tightening torque and angle are required to maintain and improve the assembling quality and ensure the life of the product. Nut fasteners, which are now marketed under the name Nut Runner, require high torque and precision torque control, precision angle control, and high speed operation for increased production, and are required for sophisticated torque control dedicated to high output BLDC motors and nut fasteners. It is demanded to develop a high-precision torque control driver and a high-speed, low-speed, high-response precision speed control system, but it does not satisfy the high precision, high torque and high speed operation characteristics required by customers. Therefore, in this paper, we propose a control technique of BLDC motor variable speed control and nut runner based on vector control and torque control based on coordinate transformation of d axis and q axis that can realize low vibration and low noise even at accurate tightening torque and high speed rotation. The performance results were analyzed to confirm that the proposed control satisfies the nut runner performance. In addition, it is confirmed that the pattern is programmed by One-Stage operation clamping method and it is tightened to the target torque exactly after 10,000 [rpm] high speed operation. The problem of tightening torque detection by torque ripple is also solved by using disturbance observer Respectively.