• Title/Summary/Keyword: Vibration component

Search Result 719, Processing Time 0.03 seconds

Defect Detection of Ceramic Heating Plate Using Ultrasound Pulse Thermography (초음파 펄스 서모그라피를 이용한 세라믹 전열 판의 결함 검출)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.259-263
    • /
    • 2006
  • The applicability of UPT (Ultrasound Pulse Thermography) for real-time defect detection of the ceramic heating plate is described. The ceramic heating plate with superior insulation and high radiation is used to control the water temperature in underwater environment. The underwater temperature control system can be damaged owing to the short circuit, which resulted from the defect of the ceramic heating plate. A high power ultrasonic energy with pulse duration of 280 ms was injected into the ceramic heating plate in the vertical direction. The ultrasound excited vibration energy sent into the component propagate inside the sample until they were converted to the heat in the vicinity of the defect. Therefore, an injection of the ultrasound pulse wave which results in heat generation, turns the defect into a local thermal wave transmitter. Its local emission is monitored and recorded via the thermal infrared camera at the surface which is processed by image recording system. Measurements were Performed on 4 kinds of samples, composed of 3 intact plates and the defect plate. The observed thermal image revealed two area of crack in the defective ceramic heating plate.

Model of New Velocimetry Using Projected Rotatable Line Gratings (투영된 회전식 직선격자를 이용한 새로운 유속계 모델)

  • Lee, Jin-Chul;Jo, jae-Heung;Chang, Soo;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.305-311
    • /
    • 2001
  • The new and simple velocimetry model to be perpendicularly arranged with two optical systems with a projected and reduced rotatable line grating is so proposed as to withstand an external vibration. We measured successfully the various velocities (V_{chop}$) of a chopper by using the new velocimeter. As a result, when rotational angles of projected volume gratings in two optical systems are $\alpha=73^{\circ}$ and $\beta=73^{\circ}$, respectively, we measured successfully the chopper velocities within 1 % accuracy from $V_{chop}=43.52cm/s to 249.36cm/s$. In this new velocimetry, we can determine the confidence of .the system by comparing the z-component of velocity, to be measured in one optical system with $V_z$ to be measured in one optical system with $V_z^'$ to to be measured in another optical system, which should be same.e same.

  • PDF

Optimization of a Nuclear Fuel Spacer Grid Using Considering Impact and Wear with Homology Constraints (호몰로지 조건을 이용하여 충격과 마모를 고려한 원자로 핵연료봉 지지격자의 최적설계)

  • Lee, Hyun-Ah;Kim, Chong-Ki;Song, Kee-Nam;Park, Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.145-150
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods saftely. Therefore, the spacer gl1d set should have sufficient strength for the external impact forces. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to tile flow-induced vibration. The conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined and corresponding design parameters are selected. The overall flow of the design is defined according to the application of axiomatic design. The design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis because the contact area becomes wider.

  • PDF

Torque Ripple Improving and Analysis of Coil-winding Rotor of Magnetic Gear (권선계자형 자기 기어의 고 토크 리플 회전자에 대한 분석 및 개선)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.259-266
    • /
    • 2020
  • Magnetic gears have the same characteristics as mechanical gears, and each rotor does not come in contact, which is advantageous over mechanical gears in friction noise, heat generation, and maintenance. In addition, when the rotor using the coil-winding is applied, it is possible to control the output of the gear as well as to cut off its own drive in the emergency situation and to change its gear ratio. So the application of the magnetic gear is infinite. However, when the coil-winding rotor is used, cogging torque due to the attraction force between the permanent magnet and the iron core appears, which leads to an increase in the torque ripple component causing the rotor vibration. Therefore, in this paper, various shapes of the coil-winding rotor are analyzed to reduce the torque ripple of the rotor, and the optimum shape for reducing the torque ripple of the magnetic gear is presented.

The Pitch/Turning Control Driver Design Modeling of Permanent Magnet Synchronous Motor (영구자석형 동기전동기의 고저/선회 제어용 드라이버 설계 모델링)

  • Lee, Chun-Gi;Hwang, Jeong-Won;Lee, Joung-Tae;Yang, Bin;Lim, Dong-Keun;Park, Seung-Yub
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • The purpose of this paper is to control of the low-speed, high-precision PMSM 2-axes pitch/turning. In this paper, apply the PAM-PWM inverter for it. However, The PAM-PWM inverter, control algorithms and hardware is complex. But it is possible to improve the performance in the low-speed operation can reduce the effect of the PWM ripple and Dead Time of inverter by applying suitable DC-bus voltage control. The direct driver PMSM(Permanent Magnet Synchronous Motor) configured to vector control part, PAM control part and the other controller. The vector control part includes PI current, speed control, additional space vector modulation. PAM control part has to have PI voltage controller and P current controller for DC-bus voltage control. Besides, the motor position estimator, the speed estimator and the counter electromotive force and Dead Time Compensation are added. With this arrangement, PMSM was driven with a low pole pitch/turning by performing the current control to the current command or torque command is the paper. As a result, it was possible to minimize the disturbance component that appears in the drive in proportion to the DC voltage magnitude. The use of a hydraulic drive method for a two-axis bubble column is a typical tank. When using the PWM PAM inverter driver is in the turret can be driven by high-precision, low vibration, low noise compared to the hydraulic drive may contribute to the computerization of the turret.

Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data

  • Ding, Youliang;Zhou, Guangdong;Li, Aiqun;Deng, Yang
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.43-68
    • /
    • 2013
  • The fluctuating wind induced vibration is one of the most important factors which has been taken into account in the design of long-span bridge due to the low stiffness and low natural frequency. Field measurement characteristics of sustained wind on structure site can provide accurate wind load parameters for wind field simulation and structural wind resistance design. As a suspension bridge with 1490 m main span, the Runyang Suspension Bridge (RSB) has high sensitivity to fluctuating wind. The simultaneous and continuously wind environment field measurement both in mid-span and on tower top is executed from 2005 up to now by the structural health monitoring system installed on this bridge. Based on the recorded data, the wind characteristic parameters, including mean wind speed, wind direction, the turbulence intensity, the gust factors, the turbulence integral length, power spectrum and spatial correlation, are analyzed in detail and the coherence functions of those parameters are evaluated using statistical method in this paper. The results indicate that, the turbulence component of sustain wind is larger than extremely strong winds although its mean wind speed is smaller; the correlation between turbulence parameters is obvious; the power spectrum is special and not accord with the Simiu spectrum and von Karman spectrum. Results obtained in this study can be used to evaluate the long term reliability of the Runyang Suspension Bridge and provide reference values for wind resistant design of other structures in this region.

Derivation the Correction of the Component of the Recorder and the Application of Hilbert Transformation to Calculating the Frequency Response of the Sensor (지진기록계 보정과 힐버트 변환 적용에 의한 센서 주파수 응답 계산)

  • Cho, Chang Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.84-90
    • /
    • 2016
  • The validation of performance test for newly developed or old-used sensor is very important in the earthquake monitoring and seismology using earthquake data. Especially the frequency response of the sensor is mainly used to correct the earthquake data. The technique of the calculation of phase and amplitude with Hilbert transformation for earthquake data that is filtered with band limited frequency in time domain is applied to calculate the frequency response of the sensor. This technique was tested for the acceleration sensors, CMG-5T of 1g and 2g installed on the vibration table at the laboratory and we could obtain satisfactory result. Tohoku large earthquake in 2011 observed at the station SNU that has accelerometer, ES-T and seismometer, STS-2 operated by KIGAM was also used to test the field data applicability. We could successfully get the low frequency response of broad band sensor, STS-2. The technique by using band limited frequency filter and Hilbert transformation showed the superior frequency response to the frequency spectrum ratio method for noisy part in data.

The Research for Higher Ride Quality with OPAX and OTPA (변수모델을 사용한 전달경로분석법(OPAX)과 전달률 함수를 사용한 전달경로분석법(OTPA)을 사용한 승차감 향상 연구)

  • Shin, Kwangsoo;Choi, Sangill;Kim, Jongsik;Lee, Sangkwon;Im, Sebin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • The ride quality has become a key component of not only design but car selling as the technology developed and the requirement of passengers grew up. Thus car industry invests lots of time and cost for the higher ride quality. The evaluation of the ride quality mainly is expressed by subjective element that drivers felt. In this paper, instead of the original transfer path analysis method, relatively new methods such as OPAX(Operational path analysis with eXogeneous inputs) and OTPA(operational transfer path analysis) are used for analyzing the main hindrance element of ride quality. With those new method, contribution rate of all paths that the vibration propagate along analyzed after driving test on the roads having different characteristic. The comprehensive hindrance elements of ride quality are deduced from the contribution rate and the improve experiment by changing one of hindrance elements for higher ride quality.

Design of Network-Based Induction Motors Fault Diagnosis System Using Redundant DSP Microcontroller with Integrated CAN Module (DSP 마이크로컨트롤러를 사용한 CAN 네트워크 기반 유도전동기고장진단 시스템 설계)

  • Yoon, Chung-Sup;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.80-86
    • /
    • 2005
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is includes of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module processes the stator current, voltage, temperatures, vibration signal of the motor.

Firing Test of Core Engine for Pre-cooled Turbojet Engine

  • Taguchi, Hideyuki;Sato, Tetsuya;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.115-121
    • /
    • 2008
  • A core engine for pre-cooled turbojet engines is designed and its component performances are examined both by CFD analyses and experiments. The engine is designed for a flight demonstration of precooled turbojet engine cycle. The engine uses gas hydrogen as fuel. The external boundary including measurement devices is set within $23cm{\times}23cm$ of rectangular cross section, in order to install the engine downstream of the air intake. The rotation speed is 80000 rpm at design point. Mixed flow compressor is selected to attain high pressure ratio and small diameter by single stage. Reverse type main combustor is selected to reduce the engine diameter and the rotating shaft length. The temperature at main combustor is determined by the temperature limit of non-cooled turbine. High loading turbine is designed to attain high pressure ratio by single stage. The firing test of the core engine is conducted using components of small pre-cooled turbojet engine. Gas hydrogen is injected into the main burner and hot gas is generated to drive the turbine. Air flow rate of the compressor can be modulated by a variable geometry exhaust nozzle, which is connected downstream of the core engine. As a result, 75% rotation speed is attained without hazardous vibration and heat damage. Aerodynamic performances of both compressor and turbine are obtained and evaluated independently.

  • PDF