• Title/Summary/Keyword: Vibration Propagation Path Analysis

Search Result 13, Processing Time 0.029 seconds

Vibration Characteristics and Its Propagation Path Analysis of an Electric Drill (전동드릴의 진동특성 및 전파경로 해석)

  • 조윤수;김도현;최연선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.422-430
    • /
    • 2001
  • An electric drill is a handy tool used in a machine shop, which consists of motor, gear, bearing, shaft, and case, i.e., a gear driving system. Low level vibration and noise of the electric drill can bring the assurance of the quality and reliability of the machine. The vibration sources of the electric drill should be investigated for the reduction of the vibration and noise of the system. Through the experiments in laboratory and the various signal processing procedure for the measured vibration and sound signals, the characteristics of the vibration of the electric drill are investigated. And its propagation path is sought using partial coherence function.

  • PDF

Vibration Characteristics and its Propagation Path Analysis of an Electric Drill (전동드릴의 진동특성 및 전파경로 해석)

  • 김도현;조윤수;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.166-171
    • /
    • 2001
  • An electric drill is a handy tool used in a machine shop, which consists of motor, gear, bearing, shaft, and case, i.e., a gear driving system. Low level vibration and noise of the electric drill can bring the assurance of the quality and reliability of the machine. The vibration sources of the electric drill should be investigated for the reduction of the vibration and noise of the system. Through the experiments in a laboratory and the various signal processing procedure for the measured vibration and sound signals, the characteristics of the vibration and noise of the electric drill are investigated. And its propagation path is sought using partial coherence technique.

  • PDF

Vibration Analysis of Rotary Compressor based on Vibration Intensity (진동인텐시티를 이용한 로타리압축기 진동 해석)

  • 이장우;김영종;안병하
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.973-978
    • /
    • 2003
  • Vibration and Noise of air conditioner are entirely determined by compressor vibration. Compressor vibration transmitted to the enclosure of air conditioner or Pipes connected compressor with heat exchanger. Enclosure generated noise and vibration. Therefore, the analysis of compressor vibration analysis is considered significant technical issue. For the reduction of vibration of compressor, it is necessary to grasp correctly vibration transmission paths and excitation sources in the compressor shell. Because, shell (Surface of compressor) shows whole vibration characteristic of compressor mechanism. In this paper, vibration intensity was applied to measure vibration energy flow on the shell. From this technique, it is possible to catch the path of vibration propagation along the one cycle and the location of vibration energy sources may change with time on the shell.

  • PDF

Vibration Analysis of Rotary Compressor based on Vibration Intensity (진동인텐시티를 이용한 로타리압축기 진동 해석)

  • 안병하;이장우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.166-172
    • /
    • 2003
  • Vibration and Noise of air conditioner are entirely determined by compressor vibration. Compressor vibration transmitted to the enclosure of air conditioner or pipes connected compressor with heat exchanger. Enclosure generate(noise and vibration. Therefore, the analysis of compressor vibration analysis is considered significant technical issue. For the reduction of vibration of compressor, it is necessary to grasp correctly vibration transmission paths and excitation sources in the compressor shell. Because, shell ( Surface of compressor ) shows whole vibration characteristic of compressor mechanism. In this paper, vibration intensity was applied to measure vibration energy flow on the shell .From this technique, it is possible to catch the path of vibration propagation along the one cycle and the location of vibration energy sources may change with time on the shell.

Structural Intensity Analysis of Local Ship Structures (선체 구조요소의 진동인텐시티 해석)

  • Cho, Dae-Seung;Kim, Sa-Soo;Lee, Dong-Hwan;Choi, Tae-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.881-887
    • /
    • 2000
  • The interest in evaluation of structural intensity arises for practical reasons, because net energy flow distribution offers information of energy transmission path, positions of sources, and sinks of vibration energy. In this paper, structural intensity analysis of local ship structures using finite element method(FEM) is carried out. The purpose of this analysis is to evaluate the relative accuracy according to mesh fineness. The structural intensity of a stiffened plate varying their mesh fineness is analyzed and the results are compared with those obtained by the assumed made method. As results, the proper mesh size in qualitative/quantitative structural intensity analysis of plate structures is proposed. In addition, the propagation phenomenon of vibration energy is investigated for the L-type plate and box-girder structures.

  • PDF

Noise Reduction of Reciprocal Compressor by Design Modification of Hermitic Shell (냉장고의 소음 저감을 위한 컴프레서 쉘 최적설계)

  • 박종찬;왕세명;박승일;이성태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.785-789
    • /
    • 2002
  • Sound measurement experiments and Finite Element analysis are carried out to understand the characteristics of the noise propagation and structure of the compressor in this research. Noises generated from the compressor on various conditions are measured to classify the transmission path of the noise propagation with respect to the sources. The experiment results show that noises attributed to the shell bending resonant modes accounts fer a major portion of the spectra and that damping spring of the discharge pipe have a damping effect on some frequency range. Constructions of the FE model show that the curvature of the upper shell is very important for the resonance of the upper shell. And, present upper shell has a difficult shape to be manufactured. And, in this research, shape optimization is conducted to increase the strength of the shell for the reduction of the noise. Sound spectrum of noise from the modified compressor verified the sound reduction.

  • PDF

The Effects of the Wave Propagation Path of Ground Vibration Induced by the Subway Train on the Reduction of Vibration Level (지하철 주변 지반진동의 전파경로가 진동레벨 감쇠에 미치는 영향)

  • Shin, Han-Chul;Cho, Sun-Kyu;Yang, Shin-Chu;Lee, Jong-Min
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.631-640
    • /
    • 2009
  • In this paper, Numerical analysis was conducted to study on the reduction of ground vibration level induced by subway train. The analytical results indicated that the soil properties were the predominant factor affecting the ground vibration when the tunnel was located in the soil layer. On the other hand, the rock properties were the predominant one when the tunnel was located in the rock layer. The effects of the angle between the vertical line of vibration source and the receive point on the reduction of vibration level were also evaluated. There were little difference in the reduction of vibration level when the receive point was located within $30^{\circ}$. The vibration level, however, rapidly decreased when the angle between the two points was larger than $40^{\circ}$.

A Study on the Tank Noise Reduction Techniques of Power Transformers (전력용 변압기 외함 소음저감에 관한 연구)

  • Kweon, Dong-Jin;Koo, Kyo-Sun;Kim, Jung-Chan;Kim, Yoo-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1759-1766
    • /
    • 2008
  • According to the increase of power demand and expansion of downtown, it is necessary to install transformers additionally in operating substations and construct substations in residential area. But the public complaint has been increased due to the transformer noise of the substation. KEPCO has used a vibration preventing pad, various soundproof walls and an encloser to transformers in outdoor substations, and a soundproof door, shutter and wind-path soundproof equipment in indoor substations to block the sound propagation from the transformers. But these noise reduction methods are not satisfied. It should be considered to reduce transformer noise itself. In this paper, we investigated tank noise reduction techniques to develope a low noise transformer. According to the mode analysis of transformer tank, we found out characteristics and locations of noise on the tank, and it's nature vibration was also analysed. On the basis of these analysis, reinforcement equipment was installed around transformer tank, and ellipse shape tank was changed to round shape tank. The effect of noise reduction was evaluated using noise generation source.

A Study on 3D Evaluation and Reduction Method for Vibration of Track-Roadbed due to Railway Load (열차하중으로 인한 궤도-지반의 3D 진동평가 및 저감방법에 관한 연구)

  • Kang, Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The paper describes four practical cases of railway structure concerning a three-dimensional numerical approach to analyse dynamic soil-structure interaction(SSI)of railway tracks on layered soil under transient load in the time domain. The SSI-Model has been implemented in TDAPIII accounting for nonlinear properties of the track and soil. The approach can be also be used to calculate vibration propagation in the soil and its effect on nearby buildings and structure. The Method is applied to analyse the dynamic response of railway tracks due to a moving wheel set. Finally some sample are given in order to reduce the vibration at the point of emission, at the transmission path and the structure itself.