• 제목/요약/키워드: Vibration Monitoring

검색결과 1,031건 처리시간 0.024초

능동형 음장조성시스템의 설계(II) (Design of Spontaneous Acoustic Field Reproducing System (II))

  • 국찬;장길수;전지현;신용규;민병철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.964-969
    • /
    • 2006
  • The soundscape is a novel attempt to offer comfortable sound environments at the urban public spaces by adding pleasant sounds and removing unagreeable ones. Most important factors to be considered therein are to determine what kind of sounds to offer and how to adjust them to the changing circumstances. But nowadays, the audio system provided in the almost every urban public spaces is just only a PA system with CD player or radio broadcasting music, the provided sound is only intended by the operator. Furthermore, providing the soundscape which fits to the situation and the atmospheric conditions needs enormous effort and time, it is almost impossible with the existing PA systems which installed in the public spaces nowadays. Thus, the new sounds cape reproduction system was developed on the basis of the prior VAFSS(Virtual Acoustic Field Simulation System) systems, which has the artificial intelligence to read out the mood of the field and select the appropriate soundscape to reproduce. In this new system, various environmental sensors with standard voltage, current or resistance output are available simultaneously, and the monitoring with video and sound became available via the TCP/IP communication protocol. The update and control of this system can be very convenient, so the money, time and the effort of maintaining and providing soundscape on the public spaces can be enormously saved. This new soundscape reproducing system was named as Virtual Acoustic Field Simulation System II (V AFSS II).

  • PDF

System identification of an in-service railroad bridge using wireless smart sensors

  • Kim, Robin E.;Moreu, Fernando;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.683-698
    • /
    • 2015
  • Railroad bridges form an integral part of railway infrastructure throughout the world. To accommodate increased axel loads, train speeds, and greater volumes of freight traffic, in the presence of changing structural conditions, the load carrying capacity and serviceability of existing bridges must be assessed. One way is through system identification of in-service railroad bridges. To dates, numerous researchers have reported system identification studies with a large portion of their applications being highway bridges. Moreover, most of those models are calibrated at global level, while only a few studies applications have used globally and locally calibrated model. To reach the global and local calibration, both ambient vibration tests and controlled tests need to be performed. Thus, an approach for system identification of a railroad bridge that can be used to assess the bridge in global and local sense is needed. This study presents system identification of a railroad bridge using free vibration data. Wireless smart sensors are employed and provided a portable way to collect data that is then used to determine bridge frequencies and mode shapes. Subsequently, a calibrated finite element model of the bridge provides global and local information of the bridge. The ability of the model to simulate local responses is validated by comparing predicted and measured strain in one of the diagonal members of the truss. This research demonstrates the potential of using measured field data to perform model calibration in a simple and practical manner that will lead to better understanding the state of railroad bridges.

A parametric study on fatigue of a top-tensioned riser subjected to vortex-induced vibrations

  • Kim, Do Kyun;Wong, Eileen Wee Chin;Lekkala, Mala Konda Reddy
    • Structural Monitoring and Maintenance
    • /
    • 제6권4호
    • /
    • pp.365-387
    • /
    • 2019
  • This study aims to provide useful information on the fatigue assessment of a top-tensioned riser (TTR) subjected to vortex-induced vibration (VIV) by performing parametric study. The effects of principal design parameters, i.e., riser diameter, wall thickness, water depth (related to riser length), top tension, current velocity, and shear rate (or shear profile of current) are investigated. To prepare the base model of TTR for parametric studies, three (3) riser modelling techniques in the OrcaFlex were investigated and validated against a reference model by Knardahl (2012). The selected riser model was used to perform parametric studies to investigate the effects of design parameters on the VIV fatigue damage of TTR. From the obtained comparison results of VIV analysis, it was demonstrated that a model with a single line model ending at the lower flex joint (LFJ) and pinned connection with finite rotation stiffness to simulate the LFJ properties at the bottom end of the line model produced acceptable prediction. Moreover, it was suitable for VIV analysis purposes. Findings from parametric studies showed that VIV fatigue damage increased with increasing current velocity, riser outer diameter and water depth, and decreased with increasing shear rate and top tension of riser. With regard to the effects of wall thickness, it was not significant to VIV fatigue damage of TTR. The detailed outcomes were documented with parametric study results.

광섬유와 필름격자를 이용한 가속도 센서 (Acceleration Sensor Using Optical Fibers and Film Gratings)

  • 이윤재;조재흥;권일범;서대철;이남권
    • 한국광학회지
    • /
    • 제19권3호
    • /
    • pp.175-181
    • /
    • 2008
  • 상용의 전자기 가속도 센서에 비해 신호의 안정성 면에서 우수하고 가격이 저렴하며 제작이 비교적 용이한 필름 격자를 이용한 광세기 방식의 새로운 가속도 센서를 제안하고 이를 제작하였다. 외부의 진동에 반응하는 외팔보(cantilever beam)에 서로 주기가 어긋난 2장의 진폭 변조용 필름 격자가 나란히 부착되어 이 필름격자를 지나가는 출력광이 외부진동에 따라 서로 다른 위상으로 변조된다. 이 두 필름격자에 의한 출력의 위상각을 이용하여 출력광 신호의 위상을 구하고, 위상 연속화 과정을 거쳐 외팔보의 변위를 계산하여 가속도 환산 관계식을 통해 가속도를 측정하였다. 본 논문의 필름 격자를 이용한 광섬유 가속도 센서는 대형 구조물 및 토목 구조물의 모니터링에 알맞은 7 Hz 이하의 저주파 대역에서 사용 가능하도록 설계하였다. 이 광섬유 가속도 센서는 광섬유를 이용하였으므로 전자기적 노이즈가 예상되는 곳에서도 구조물의 진동 측정에 적합하다.

사냑형 간섭계 광섬유 센서를 이용한 변압기유 내에서의 외부 음향 주파수 모니터링 (Applied Sound Frequency Monitoring in the Transformer Oil Using Fiber Optic Sagnac Interferometer)

  • 이종길;이승홍
    • 한국음향학회지
    • /
    • 제34권4호
    • /
    • pp.288-294
    • /
    • 2015
  • 광섬유 사냑 간섭계는 음향 및 진동과 같은 물리적 변화량을 탐지하는 센서로 잘 개발되어 있다. 본 논문에서는 변압기유가 채워진 원통형 캐비티에 음압이 발생되었을 때 한 개의 루프내에 설치된 광섬유 배열 센서를 이용하여 음향을 탐지하였다. 서로 다른 외부 음향 주파수 $f_1$$f_2$를 피에조 재료를 이용하여 발생시키고 주파수는 5 kHz에서 90 kHz까지로 선정하였다. 실험 결과 광섬유 센서는 하모닉 성분인 $f_1$, $f_2$, $2f_1$, $2f_2$, ${\mid}f_1-f_2{\mid}$, ${\mid}f_1+f_2{\mid}$의 주파수를 탐지하였다. 제안된 광섬유 센서 배열은 변압기 내의 부분 방전으로 인한 음압과 진동과 같은 물리량을 모니터링 하는데 적용할 수 있을 것으로 판단된다.

음향도구 착용 근로자의 소음노출 실태에 관한 연구 (Research on the Characteristics and Measures of Noise Exposure on Worker Wearing Acoustic Devices)

  • 김갑배;유계묵;이인섭;정광재
    • 한국소음진동공학회논문집
    • /
    • 제21권7호
    • /
    • pp.615-621
    • /
    • 2011
  • There are hundreds of thousands call center workers wearing acoustic device. However, researches and noise exposure measurements on the noise transmitted from acoustic devices have seldom been performed due to the difficulty of measurement and to the absence of the measuring method in Korea. The aim of this study is to set up management measures to protect hearing loss on the call operator by acquiring measurement data of noise transmitted from the headset. Noise exposure measurements of 17 operators were performed in 7 call centers and head and Torso simulator method in compliance with the ISO standard 11904-2 was used for the measurement of noise transmitted from the headset. Sound pressure levels(SPL) transmitted from the headset were 73.2~86 dB(A). The operator exposed to the highest SPL set up his volume control at 9 which was the highest volume level. The volume control level, adjustable from 1 to 9, could be identified 12 out of 17 operators and the range of volume levels was 4.5~9. As a result of pearson correlation analysis, the correlation between volume level and SPL transmitted from the headset showed high relation as significance at the 0.672 level(p<0.05). To protect hearing loss of call center operators, it is more practical and effective measure to limit the volume level below the noise exposure level, i.e. 85 dB(A), rather than to carry out noise monitoring considering cost-effective aspect.

고속도로 톨게이트 요금수납원 소음노출 수준 평가 (Noise level Assessment Exposed to Cashiers in the Highway Tollbooth)

  • 김갑배;정은교;김종규;박해동;강준혁
    • 한국소음진동공학회논문집
    • /
    • 제26권6_spc호
    • /
    • pp.729-735
    • /
    • 2016
  • According to the survey for working environment of the cashiers in highway tollbooths, workers replied that noise was the most harmful substances next to air pollutant in the tollbooth. Researches on the noise levels exposed to cashiers in the highway tollbooth scarcely have been performed. Therefore, the aim of this study was to acquire baseline data to prevent health impairments of the cashiers by evaluating noise level exposed to them. Noise dosimeters were used for monitoring workers' noise exposure level in the tollbooths at 8 different highway tollgates. The noise levels of tollbooths did not exceed noise exposure limit of the ministry of labor, 90 dB(A). The average TWA inside of the tollbooths was 55.4 dB(A) and the average TWA outside of tollbooths was 58.3 dB(A). The average TWA outside of tollbooths was slightly higher than that of inside of tollbooths. However, the significance probability(p-value) was 0.255 which means statistically not significant. The noise levels inside and outside of tollbooth were statistically significant to both mean traffic volume per day and traffic volume of passenger car.

스트레인게이지 타입 회전형 공구동력계 개발과 3축 정적 하중 검증 (Development of Strain-gauge-type Rotational Tool Dynamometer and Verification of 3-axis Static Load)

  • 이동섭;김인수;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.72-80
    • /
    • 2019
  • In this task, the tool dynamometer design and manufacture, and the Ansys S/W structural analysis program for tool attachment that satisfies the cutting force measurement requirements of the tool dynamometer system are used to determine the cutting force generated by metal cutting using 3-axis static structural analysis and the LabVIEW system. The cutting power in a cutting process using a milling tool for processing metals provides useful information for understanding the processing, optimization, tool status monitoring, and tool design. Thus, various methods of measuring cutting power have been proposed. The device consists of a strain-gauge-based sensor fitted to a new design force sensing element, which is then placed in a force reduction. The force-sensing element is designed as a symmetrical cross beam with four arms of a rectangular parallel line. Furthermore, data duplication is eliminated by the appropriate setting the strain gauge attachment position and the construction of a suitable Wheatstone full-bridge circuit. This device is intended for use with rotating spindles such as milling tools. Verification and machining tests were performed to determine the static and dynamic characteristics of the tool dynamometer. The verification tests were performed by analyzing the difference between strain data measured by weight and that derived by theoretical calculations. Processing test was performed by attaching a tool dynamometer to the MCT to analyze data generated by the measuring equipment during machining. To maintain high productivity and precision, the system monitors and suppresses process disturbances such as chatter vibration, imbalances, overload, collision, forced vibration due to tool failure, and excessive tool wear; additionally, a tool dynamometer with a high signal-to-noise ratio is provided.

Energy harvesting from piezoelectric strips attached to systems under random vibrations

  • Trentadue, Francesco;Quaranta, Giuseppe;Maruccio, Claudio;Marano, Giuseppe C.
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.333-343
    • /
    • 2019
  • The possibility of adopting vibration-powered wireless nodes has been largely investigated in the last years. Among the available technologies based on the piezoelectric effect, the most common ones consist of a vibrating beam covered by electroactive layers. Another energy harvesting strategy is based on the use of piezoelectric strips attached to a hosting structure subjected to dynamic loads. The hosting structure, for example, can be the system to be equipped with wireless nodes. Such strategy has received few attentions so far and no analytical studies have been presented yet. Hence, the original contribution of the present paper is concerned with the development of analytical solutions for the electrodynamic analysis and design of piezoelectric polymeric strips attached to relatively large linear elastic structural systems subjected to random vibrations at the base. Specifically, it is assumed that the dynamics of the hosting structure is dominated by the fundamental vibration mode only, and thus it is reduced to a linear elastic single-degree-of-freedom system. On the other hand, the random excitation at the base of the hosting structure is simulated by filtering a white Gaussian noise through a linear second-order filter. The electromechanical force exerted by the polymeric strip is negligible compared with other forces generated by the large hosting structure to which it is attached. By assuming a simplified electrical interface, useful new exact analytical expressions are derived to assess the generated electric power and the integrity of the harvester as well as to facilitate its optimum design.

머신러닝 모델을 이용한 석산 개발 발파진동 예측 (Prediction of Blast Vibration in Quarry Using Machine Learning Models)

  • 정다희;최요순
    • 터널과지하공간
    • /
    • 제31권6호
    • /
    • pp.508-519
    • /
    • 2021
  • 본 연구에서는 발파 시 사람과 주변 환경에 영향을 끼치는 발파진동(peak particle velocity, PPV)을 예측하는 모델을 개발하였다. PPV를 예측하기 위해 kNN(k-nearest neighbors), CART(classification and regression tree), SVR(support vector regression), PSO(particle swarm optimization)-SVR 알고리즘을 이용한 4가지 머신러닝 모델을 개발하고 상호 비교하였다. 머신러닝 모델을 훈련하기 위해 경상남도 창원시에 있는 욕망산을 연구지역으로 선정하고 1048개의 발파 데이터를 획득하였다. 발파 데이터는 천공장, 저항선, 공간격, 최대지발장약량, 비장약량, 총공수, 에멀전비율, 이격거리, PPV로 구성되었다. 훈련된 모델들의 성능을 평가하기 위한 지표 값으로 MAE(mean absolute error), MSE(mean squared error), RMSE(root mean squared error)를 사용하였다. 평가결과 PSO-SVR 모델이 MAE, MSE, RMSE가 각각 0.0348, 0.0021, 0.0458으로 가장 우수한 예측 성능을 나타냈다. 마지막으로 개발된 머신러닝 모델을 이용하여 주변 환경에 영향을 끼치는 정도를 예측하는 방법을 제시하였다.