• Title/Summary/Keyword: Vibration Modulation

Search Result 118, Processing Time 0.025 seconds

Active Vibration Control of Smart Structure Using Pulse Width Modulation (펄스폭변조를 이용한 지능구조물의 능동진동제어)

  • Kwak, Moon K.;Kim, Ki-Young;Bang, Se-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.105-111
    • /
    • 2005
  • This paper is concerned with the active vibration control of smart structure using actuator signal made of pulse width modulation. The pulse width modulation has been used in motor control, where the amount of energy fed into the motor is controlled by the pulse width instead of applied voltage. The advantage of using the pulse width modulation is that analog signal can be replaced by the digital signal so that we can reduce system costs and power consumption. The effect of pulse width modulation on the vibration response was investigated in this study and the valid transformation rule was found. Then, the pulse width modulation was realized using a microprocessor and electronic circuit. The active vibration suppression was carried out by combining the positive position feedback controller and the pulse width modulation. The experimental result shows that we can replace an expensive amplifier with a pulse width modulation system thus reducing the system cost. The result also shows that the active vibration control can be achieved by the pulse width modulation technique.

A Vibration-based Fault Diagnostics Technique for the Planetary Gearbox of Wind Turbines Considering Characteristics of Vibration Modulation (풍력발전기 유성기어박스의 진동 변조 특성을 고려한 진동기반 고장 진단 기법 고찰)

  • Ha, Jong M.;Park, Jungho;Oh, Hyunsoek;Youn, Byeng D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.665-671
    • /
    • 2015
  • The performance of fault diagnostics for a planetary gearbox depends on vibration modulation characteristics, which can vary with manufacturing & assembly tolerance, and load condition. In this paper, a fault diagnostics technique that considers vibration modulation characteristics is proposed for the effective fault detection of planetary gearboxes in wind turbines. For identifying the vibration modulation characteristics in practice, re-sampled vibration signals are processed with narrow band-pass filters. Thereafter, the optimal position of the vibration extraction window is identified for effective detection of faulty signals under the varying vibration modulation characteristics. The proposed diagnostics technique makes it possible to perform robust diagnostics of the planetary gearbox with regard to the changeable vibration modulation effect. For demonstrating the proposed fault diagnostics technique, a 2-kW WT testbed is designed with two DC motors and gearboxes. A faulty gear with partial tooth breakage is machined and assembled into the gearbox.

Synchronous Periodic Frequency Modulation Based on Interleaving Technique to Reduce PWM Vibration Noise

  • Zhang, Wentao;Xu, Yongxiang;Ren, Jingwei;Su, Jianyong;Zou, Jibin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1515-1526
    • /
    • 2019
  • Ear-piercing high-frequency noise from electromagnetic vibrations in motors has become unacceptable in sensitive environments, due to the application of pulse width modulation (PWM) and in consideration of switching losses. This paper proposed a synchronous periodic frequency modulation (SPFM) method based on the interleaving technique for paralleled three-phase voltage source inverters (VSIs) to eliminate PWM vibration noise. The proposed SPFM technique is able to effectively remove unpleasant high-frequency vibration noise as well as acoustic noise more effectively than the conventional periodic carrier frequency modulation (PCFM) and interleaving technique. It completely eliminates the vibration noise near odd-order carrier frequencies and reduces the PWM vibration noise near even-order carrier frequencies depending on the switching frequency variation range. Furthermore, the SPFM method is simple to implement and does not employ additional circuits in the drive system. Finally, the effectiveness of the proposed method has been confirmed by detailed experimental results.

Dynamic Modulation Transfer Function Analysis of Images Blurred by Sinusoidal Vibration

  • Du, Yanlu;Ding, Yalin;Xu, Yongsen;Sun, Chongshang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.762-769
    • /
    • 2016
  • The dynamic modulation transfer function (MTF) for image degradation caused by sinusoidal vibration is formulated based on a Bessel function of the first kind. The presented method makes it possible to obtain an analytical MTF expression derived for arbitrary frequency sinusoidal vibration. The error obtained by the use of finite order sum approximations instead of infinite sums is investigated in detail. Dynamic MTF exhibits a stronger random behavior for low frequency vibration than high frequency vibration. The calculated MTFs agree well with the measured MTFs with the slant edge method in imaging experiments. With the proposed formula, allowable amplitudes of any frequency vibration are easily calculated. This is practical for the analysis and design of the line-of-sight stabilization system in the remote sensing camera.

Speech Intelligibility Analysis on the Vibration Sound of the Glass Window of a Conference Room (회의실 유리창 진동음의 음성 명료도 분석)

  • Kim, Hee-Dong;Kim, Yoon-Ho;Kim, Seock-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.4 s.121
    • /
    • pp.363-369
    • /
    • 2007
  • The purpose of the study is to obtain acoustical information to prevent eavesdropping of the glass window. Speech intelligibility was investigated on the vibration sound detected from the glass window of a conference room. Objective test using speech transmission index(STI) was performed to estimate quantitatively the speech intelligibility. STI was determined based on tile modulation transfer function(MTF) of the room-glass window system. Using Maximum Length Sequency(MLS) signal as a sound source, impulse responses of the glass window and MTF were determined by signals from accelerometers and laser doppler vibrometer. Finally, speech intelligibility of the interior sound and window vibration were compared under different sound pressure levels and amplifier gains to confirm the effect of measurement condition on the speech intelligibility.

Vibration effects on remote sensing satellite images

  • Haghshenas, Javad
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.543-553
    • /
    • 2017
  • Vibration is a source of performance degradation in all optical imaging systems. Performance of high resolution remote sensing payloads is often limited due to satellite platform vibrations. Effects of Linear and high frequency sinusoidal vibrations on the system MTF are known exactly in closed form but the low frequency vibration effects is a random process and must be considered statistically. Usually the vibration MTF budget is defined based on the mission requirements and the overall MTF limitations. For analyzing low frequency effects, designer must know all the systems specifications and parameters. With a good understanding of harmful vibration frequencies and amplitudes in the system preliminary design phase, their effects could be removed totally or partially. This procedure is cost effective and let the designer to eliminate just harmful vibrations and avoids over-designing. In this paper we have analyzed the effects of low-frequency platform vibrations on the payload's modulation transfer function. We have used a statistical analysis to find the probability of imaging with a MTF equal or greater than a pre-defined budget for different missions. The worst and average cases have been discussed and finally we have proposed "look-up figures". Using these look-up figures, designer can choose the electro-optical parameters in such a way that vibration effects be less than its pre-defined budget. Furthermore, using the results, we can propose a damping profile based on which vibration frequencies and amplitudes must be eliminated to stabilize the payload system.

Speech Intelligibility Analysis on the Vibration Sound of the Window Glass of a Conference Room (회의실 유리창 진동음의 명료도 분석)

  • Kim, Yoon-Ho;Kim, Hee-Dong;Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.150-155
    • /
    • 2006
  • Speech intelligibility is investigated on a conference room-window glass coupled system. Using MLS(Maximum Length Sequency) signal as a sound source, acceleration and velocity responses of the window glass are measured by accelerometer and laser doppler vibrometer. MTF(Modulation Transfer Function) is used to identify the speech transmission characteristics of the room and window system. STI(Speech Transmission Index) is calculated by using MTF and speech intelligibility of the room and the window glass is estimated. Speech intelligibilities by the acceleration signal and the velocity signal are compared and the possibility of the wiretapping is investigated. Finally, intelligibility of the conversation sound is examined by the subjective test.

  • PDF

A Study on Radial Electronic Shearography for Measuring Amplitudes of Vibration of Symmetrical Objects (대칭형 물체의 진동 진폭 분포 측정을 위한 레이디얼 전단 간섭계에 대한 연구)

  • Kang, Young-June;Choi, Jang-Seob;Rho, Kyung-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.9-16
    • /
    • 1997
  • In this paper, a newly radial electronic shearography system was developed in order to study vibration characteristics of symmetrical objects. We utilized the electro-optic holography theory for quantificational analysis and a porror prism for shearing two inages radially in this study. These image data obtained by this shearography give us various distributions of the gradient of vibration amplitude, and they are useful informations to study vibrational characteristics of symmetrical objects. Finally this developed system with phase stepping and modulation was applied to fans and disks to inspect characteristics of the vibration and the blance of symmetrical objects and obtained good results.

  • PDF

Irradiance Distribution Analysis of Inclined-cut Multi-mode Optical Fiber for Optical Microphone Design (광 마이크로폰 설계를 위한 경사 절단된 멀티모드 광섬유의 조도분포 해석)

  • Kim, Kyong-Woo;Che, Woo-Seong;Kwon, Hyu-Sang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.693-698
    • /
    • 2008
  • For designing intensity modulation type optical microphone, the irradiance distribution which can be applied to inclined-cut geometrical configuration is suggested. The model is important in analysis of response characteristics f3r intensity modulation type optical microphone. To overcome low sensitivity problem in intensity modulation type optical microphone, inclined-cut optical fiber is considered here. Based on optical geometry, the inclined-cut optical fiber sensor is designed and fabricated. The experiments are carried out to evaluate sensor performance.

  • PDF

Prediction of Frequency Modulation of Discrete Noise for Random Pitch Cross-Flow Fans by Unsteady Viscous Flow Computations (비정상 점성 유동 해석에 의한 부등피치 횡류홴의 이산소음 주파수 변조 특성 예측)

  • Cho, Yong;Moon, Young-J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.658-664
    • /
    • 2002
  • Unsteady flow characteristics and associated blade tonal noise of a cross-flow fan are predicted by a computational method. The incompressible Navier-Stokes equations are time-accurately solved for obtaining the pressure fluctuations between the rotating blades and the stabilizer, and sound pressure is predicted using Curie's equation. The computed fan performance is favorably compared with experimental data, and also indicates that the performance is not significantly altered by the random pitch effect at ${\phi}>0.4$. In the present study, the narrow-band noise characteristics of three impellers with a uniform and two random Pitch (type-A and-B) blades are compared by the SPL (Sound Pressure Level) spectra, and their frequency modulation characteristics of the BPF (Blade Passing Frequency) noise are also discussed.

  • PDF