• Title/Summary/Keyword: Vibration Identification

Search Result 842, Processing Time 0.025 seconds

Noise and Vibration Analysis of Rotary Compressor by SEA (SEA에 의한 회전 압축기의 소음 진동 해석)

  • 황선웅;안병하;정의봉;김규환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.964-968
    • /
    • 2003
  • Hermetic rotary compressor is one of the most Important components for air conditioning system since it has a great effect on both the performance and the noise and vibration of He system. Noise and vibration of rotary compressor is occurred due to gas pulsation during compression process and unbalanced dynamic force. In order to reduce noise and vibration. it is necessary to identify sources of noise and vibration and effectively control then. Many approaches have been tried to identify noise sources of compressor. However, compressor noise source identification has proven to be difficult since the characteristics of compressor noise are complicated due to the interaction of the compressor parts and gas pulsation. In this work, Statistical Energy Analysis has been used to trace the energy flow in the compressor and identify transmission paths from the noise source to the sound field.

  • PDF

A Study on Noise Reduction for the Driving System of a Forklift (지게차 구동부의 소음 진동 저감에 대한 연구)

  • Kim, Woo-Hyung;Hong, Il-Hwa;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 2008
  • In this study. the noise sources were identified and the noise and vibration were reduced for an industrial forklift. To identify the noise sourses, noise signals were measured by a microphone on a driver seat and these signals were analyzed with a waterfall plot. For this purpose, the gear mesh frequencies from the gear box of a reducer were not only investigated but noise/vibration sourses of an electric motor were also examined. Furthermore, the frequency response functions were obtained to confirm the vibration and noise sourses. It was found that severe vibration and noise were generated in the casing and the connecting part of the reducer. The severe vibration and noise could be reduced by a structure modification.

A Study on Road Noise Extraction Methods for Listening (청음용 자동차 로드노이즈 추출 방법 연구)

  • Kook, Hyung-Seok;Kim, Hyoung-Gun;Cho, Munhwan;Ih, Kang-Duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.844-850
    • /
    • 2016
  • This study pertains to the extraction of the road noise component of signals from a vehicle's interior noise via the traditional frequency domain and time domain system identification methods. For road noise extraction based on the frequency domain system identification method, the appropriate matrix inversion strategy is investigated and causal and non-causal impulse response filters are compared. Furthermore, appropriate data lengths for the frequency domain system identification method are investigated. In addition to the traditional road noise extraction methods based on frequency domain system identification, a new approach to extract road noise via the time domain system identification method based on a parametric input-output model is proposed and investigated in the present study. In this approach, instead of constructing a higher order model for the full-band road noise, input and output signals are processed in the subband domain and lower order parametric models optimal to each subband are determined. These parametric models are used to extract road noises in each subband; the full band road noise is then reconstructed from the subband road noises. This study shows that both the methods in the frequency domain and the time domain successfully extract the road noise from the vehicle's interior noise.

System identification of an in-service railroad bridge using wireless smart sensors

  • Kim, Robin E.;Moreu, Fernando;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.683-698
    • /
    • 2015
  • Railroad bridges form an integral part of railway infrastructure throughout the world. To accommodate increased axel loads, train speeds, and greater volumes of freight traffic, in the presence of changing structural conditions, the load carrying capacity and serviceability of existing bridges must be assessed. One way is through system identification of in-service railroad bridges. To dates, numerous researchers have reported system identification studies with a large portion of their applications being highway bridges. Moreover, most of those models are calibrated at global level, while only a few studies applications have used globally and locally calibrated model. To reach the global and local calibration, both ambient vibration tests and controlled tests need to be performed. Thus, an approach for system identification of a railroad bridge that can be used to assess the bridge in global and local sense is needed. This study presents system identification of a railroad bridge using free vibration data. Wireless smart sensors are employed and provided a portable way to collect data that is then used to determine bridge frequencies and mode shapes. Subsequently, a calibrated finite element model of the bridge provides global and local information of the bridge. The ability of the model to simulate local responses is validated by comparing predicted and measured strain in one of the diagonal members of the truss. This research demonstrates the potential of using measured field data to perform model calibration in a simple and practical manner that will lead to better understanding the state of railroad bridges.

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

An Experimental Study on the Noise and Vibration Characteristics of LCD TV Inverter (LCD TV 인버터 소음 및 진동 특성의 실험적 연구)

  • You, Chung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.982-989
    • /
    • 2008
  • There is a noticeable hum from the inverter board of LCD TV when in operation. In this study, we investigate the source and the characteristics of this noise for the inverter board of LCD TV using measurement of vibration and noise. Modal analysis of vibration and noise is visualized for identification of noise sources and transmission vibration. The main source of noise was the transformer of the LCD TV inverter. A noise reduction was achieved by damping the structural elements.

Adaptive Vibration Control of Flexible One-Lind Manipulator (유연한 단일링크 조작기의 적응진동제어)

  • 박영욱;김재원;박영필
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.385-394
    • /
    • 1995
  • Recently, since robot manipulator becomes faster and lighter, its link is no longer regarded as rigid body, and robot controller which only controls robot position cannot reduce vibration of the flexible link. Therefore vibration control is needed in robot manipulator control in addition to position control. In the case that tip mass changes when robot manipulator in working, it is clear that the efficiency of the vibration/position controller designed for the fixed system goes down. In this paper, the system with time varying parameters, adaptive control theory is adopted which estimates parameters changed by the variation of the tip mass and re-calculates the gain of the controller. Validify of the proposed adaptive controller and capability of the estimator are evaluated by computer simulations and experiments. Comparison results of the optimal controller for the fixed system and proposed adaptive controller and carried out.

  • PDF

The Identification of Vibration Source and Its Transmission Paths In Compressor Using PCF Method (PCF법을 이용한 왕복동압축기의 진동원 및 진동전달경로 규명)

  • Lee, Dae-Sung;Hwang, Won-Gul;Lee, You-Yub;Im, Hyung-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.386.1-386
    • /
    • 2002
  • It is necessary to determine the vibration source and its transmission paths in order to develop a low-noise compressor Through the use of multiple-input/single-output(MISO) model, the transmission paths of vibration within a reciprocating compressor have been investigated. In order to identify the transmission path, we measure the accelerations of the block and transverse vibrations of the line discharge tube. (omitted)

  • PDF

The Identification of Vibration Sources in Optical Disk Drive Using PCF Method (PCF 기법을 이용한 광디스크 드라이브의 진동원 규명)

  • 함경훈;장영배;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.127-133
    • /
    • 2002
  • After the vibration source is searched in optical disk drive as an information storage device broadly used the influence of it against FES(Focusing Error Signal) which is a kind of positioning error of pick up from the circuit is carefully examined. For that Purpose, partial coherence function method is applied on a simple multi-degree of freedom model made for the theoretical verification and it is practically introduced in optical disk drive for analyzing the effect of vibration source. Finally, partial coherence output spectrum is attentively observed in order to know which vibration source is a great influence on FES.

  • PDF

Ambient Vibration Tests for Enhanced Bridges Integrity Assessment (교량건전성 평가의 개선을 위한 상시진동시험)

  • Yi, Jin-Hak;Lee, Jong-Jae;Lee, Chang-Geun;Lee, Won-Tae;Yun, Chung-Bang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.611-614
    • /
    • 2004
  • In this study, ambient vibration tests are carried out to replace the current bridge integrity assessment using controlled vehicle test, which requires the traffic control and may induce public complains. Ambient vibration tests and output-only modal identification can be very effective approach to evaluate the bridge integrity because the ambient vibration tests can be performed very easily without trafnc control. The bridges in test road of Jungbu Inland Highway were tested and the results are discussed here.

  • PDF