• Title/Summary/Keyword: Vibration Diagnosis

Search Result 483, Processing Time 0.03 seconds

Diagnosis on the Clearance of Rotating Machinery using Correlation Dimension (상관차원을 이용한 회전기계의 간극 진단)

  • Park, Sang-Moon;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.134-139
    • /
    • 2004
  • The correlation dimension of a nonlinear method for the diagnosis on the clearance of rotating machinery is introduced in this paper. The correlation dimension can provide some intrinsic information of an underlying dynamic system by reconstructing measured scalar time series. Vibration signals measured from a rotor with different operating conditions are analyzed using the correlation dimension. The results show that the correlation dimension method can identify the magnitude of the clearance of a rotor and the lubricating condition.

  • PDF

Vibration Anomaly Detection of One-Class Classification using Multi-Column AutoEncoder

  • Sang-Min, Kim;Jung-Mo, Sohn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.9-17
    • /
    • 2023
  • In this paper, we propose a one-class vibration anomaly detection system for bearing defect diagnosis. In order to reduce the economic and time loss caused by bearing failure, an accurate defect diagnosis system is essential, and deep learning-based defect diagnosis systems are widely studied to solve the problem. However, it is difficult to obtain abnormal data in the actual data collection environment for deep learning learning, which causes data bias. Therefore, a one-class classification method using only normal data is used. As a general method, the characteristics of vibration data are extracted by learning the compression and restoration process through AutoEncoder. Anomaly detection is performed by learning a one-class classifier with the extracted features. However, this method cannot efficiently extract the characteristics of the vibration data because it does not consider the frequency characteristics of the vibration data. To solve this problem, we propose an AutoEncoder model that considers the frequency characteristics of vibration data. As for classification performance, accuracy 0.910, precision 1.0, recall 0.820, and f1-score 0.901 were obtained. The network design considering the vibration characteristics confirmed better performance than existing methods.

Development of Algorithm for Vibration Analysis Automation of Rotating Equipments Based on ISO 20816 (ISO 20816 기반 회전기기 진동분석 자동화 알고리즘 개발)

  • JaeWoong Lee;Ugiyeon Lee;Jeongseok Oh
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.93-104
    • /
    • 2024
  • Facility diagnosis is essential for the smooth operation and life extension of rotating equipment used in industrial sites. Compared to other diagnostic methods, vibration diagnosis can find most of the initial defects, such as unbalance, alignment failure, bearing defects and resonance, compared to other diagnostic methods. Therefore, vibration analysis is the most commonly used facility diagnosis method in industrial sites, and is usefully used as a predictive preservation (PdM) technology to manage the condition of the facility. However, since the vibration diagnosis method is performed based on experience based on the standard, it is carried out by experts. Therefore, it is intended to contribute to the reliability of the facility by establishing a system that anyone can easily judge defects by establishing a vibration diagnosis method performed based on experience as a knowledgeable code system. An algorithm was developed based on the ISO-20816 standard for vibration measurement, and the reliability was verified by comparing the results of vibration measurement at various demonstration sites such as petrochemical plant compressors, hydrogen charging stations, and industrial machinery with the results of analysis using a development system. The developed algorithm can contribute to predictive maintenance (PdM) technology that anyone can diagnose the condition of the rotating machine at industrial sites and identify defects early to replace parts at the exact time of replacement. Furthermore, it is expected that it will contribute to reducing maintenance costs and downtime due to the failure of rotating machines when applied to various industrial sites such as oil refining facilities, transportation, production facilities, and aviation facilities.

The Diagnosis of Cooling Tower System (Cooling Tower System 진동 진단)

  • Lee, Sun-Hwi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1090-1094
    • /
    • 2007
  • The aim of this study is to estimate the cause of Cooling Tower vibration and eliminate the faults of fan with high vibration in spite of overhaul. The cause of high vibration was that the natural frequency of fan blade coincide with second blade pass frequency. To achieve reduction of Cooling Tower vibration, change motor speed from 1784rpm to 1714rpm, and then the vibration has reduced conspicuously.

  • PDF

Diagnosis of Excessive Vibration Signals of Two-Pole Generator Rotors in Balancing

  • Park, Jong-Po
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.590-596
    • /
    • 2000
  • Cause of excessive vibration with twice the rotational speed of a two-pole generator rotor for the fossil power plants was investigated. The two-pole generator rotor, treated as a typically asymmetric rotor in vibration analysis, produces asynchronous vibration with twice the rotational speed, sub-harmonic critical speeds, and potentially unstable operating zones due to its own inertia and/or stiffness asymmetry. This paper introduces a practical balancing procedure, and presents the results of the investigation on sources of the excessive vibration based on the experimental vibration data of the asymmetric two-pole rotor in balancing.

  • PDF

A Study on Failure Diagnosis System for a Hydraulic Pump in Injection Molding Machinery Using Vibration Analysis (진동 분석을 이용한 사출성형기 유압펌프 결함 진단 시스템에 관한 연구)

  • Kim, Taehyun;Jeon, Yongho;Lee, Moon Gu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.343-348
    • /
    • 2013
  • In line with the advances in factory automation, various pieces of equipment are now operated in batch processes controlled by computers. However, many kinds of faults can occur in complicated and large systems, which can result in low productivity and economic loss. The reliability and safety of systems have been studied because of the difficulty of determining the severity and location of faults. Therefore, it is necessary to detect and diagnose such faults in order to guarantee the reliability and safety of the equipment. In this paper, a diagnosis method for the ball bearings of a hydraulic pump is applied using a vibration signal for the maintenance of injection molding equipment. The bearings' defects are selected as a main failure mode through a failure mode and effect analysis (FMEA). Usually, there are nonlinear and impulse components of vibration in a ball bearing with faults. For the effective fault diagnosis of a ball bearing, nonlinear diagnostic methods and time-frequency analysis are applied, in addition to the methods currently used, such as power spectrum, time series analysis, and statistical methods. As a result of this study, a failure diagnosis system is provided that is useful even for non-experts. This is a condition-based method that makes it possible to resolve problems in a timely and economical way, in contrast to the prior method, which required regular but wasteful maintenance based on the experience of expensive external experts.

Change Rate Extraction of Vocal Fold Vibration for Heart Conditional and Pronunciation of Correlative Analysis (심장 상태와 발음간의 연관성 분석을 위한 성대 진동의 변화율 추출)

  • Kim, Bong-Hyun;Cho, Dong-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.191-196
    • /
    • 2010
  • To increase heart disease by smoking, diabetes, obesity, stress, etc. is caused by death rate so heart disease has proposed early diagnosis necessity in modem society. Especially, incidence is on the increase rapidly because of ignorance and indifference of people about heart disease. Therefore to solve a social phenomenon about heart disease, this paper would like to design objective output parameter necessary early diagnosis of heart disease based on diagnosis theory about heart condition in the proposed Donguibogam. Specially to prove inaccurate pronunciation by heart disease would like to perform comparison, analysis of experimental group to extract vibration change rate of the vocal cords. This paper is comprised of heart disease patient and healthy people group in adult man speak to standard language then I'd like to propose early diagnosis about heart disease through comparison, analysis of vibration change rate of the vocal cords by acquisition of these voice.

Transfer Learning-Based Vibration Fault Diagnosis for Ball Bearing (전이학습을 이용한 볼베어링의 진동진단)

  • Subin Hong;Youngdae Lee;Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.845-850
    • /
    • 2023
  • In this paper, we propose a method for diagnosing ball bearing vibration using transfer learning. STFT, which can analyze vibration signals in time-frequency, was used as input to CNN to diagnose failures. In order to rapidly learn CNN-based deep artificial neural networks and improve diagnostic performance, we proposed a transfer learning-based deep learning learning technique. For transfer learning, the feature extractor and classifier were selectively learned using a VGG-based image classification model, the data set for learning was publicly available ball bearing vibration data provided by Case Western Reserve University, and performance was evaluated by comparing the proposed method with the existing CNN model. Experimental results not only prove that transfer learning is useful for condition diagnosis in ball bearing vibration data, but also allow other industries to use transfer learning to improve condition diagnosis.

Fault Diagnosis Method based on Feature Residual Values for Industrial Rotor Machines

  • Kim, Donghwan;Kim, Younhwan;Jung, Joon-Ha;Sohn, Seokman
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.89-99
    • /
    • 2018
  • Downtime and malfunction of industrial rotor machines represents a crucial cost burden and productivity loss. Fault diagnosis of this equipment has recently been carried out to detect their fault(s) and cause(s) by using fault classification methods. However, these methods are of limited use in detecting rotor faults because of their hypersensitivity to unexpected and different equipment conditions individually. These limitations tend to affect the accuracy of fault classification since fault-related features calculated from vibration signal are moved to other regions or changed. To improve the limited diagnosis accuracy of existing methods, we propose a new approach for fault diagnosis of rotor machines based on the model generated by supervised learning. Our work is based on feature residual values from vibration signals as fault indices. Our diagnostic model is a robust and flexible process that, once learned from historical data only one time, allows it to apply to different target systems without optimization of algorithms. The performance of the proposed method was evaluated by comparing its results with conventional methods for fault diagnosis of rotor machines. The experimental results show that the proposed method can be used to achieve better fault diagnosis, even when applied to systems with different normal-state signals, scales, and structures, without tuning or the use of a complementary algorithm. The effectiveness of the method was assessed by simulation using various rotor machine models.

A study on fault diagnosis of marine engine using a neural network with dimension-reduced vibration signals (차원 축소 진동 신호를 이용한 신경망 기반 선박 엔진 고장진단에 관한 연구)

  • Sim, Kichan;Lee, Kangsu;Byun, Sung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.492-499
    • /
    • 2022
  • This study experimentally investigates the effect of dimensionality reduction of vibration signal on fault diagnosis of a marine engine. By using the principal component analysis, a vibration signal having the dimension of 513 is converted into a low-dimensional signal having the dimension of 1 to 15, and the variation in fault diagnosis accuracy according to the dimensionality change is observed. The vibration signal measured from a full-scale marine generator diesel engine is used, and the contribution of the dimension-reduced signal is quantitatively evaluated using two kinds of variable importance analysis algorithms which are the integrated gradients and the feature permutation methods. As a result of experimental data analysis, the accuracy of the fault diagnosis is shown to improve as the number of dimensions used increases, and when the dimension approaches 10, near-perfect fault classification accuracy is achieved. This shows that the dimension of the vibration signal can be considerably reduced without degrading fault diagnosis accuracy. In the variable importance analysis, the dimension-reduced principal components show higher contribution than the conventional statistical features, which supports the effectiveness of the dimension-reduced signals on fault diagnosis.