• Title/Summary/Keyword: VggNet

Search Result 93, Processing Time 0.022 seconds

Development of Intelligent Severity of Atopic Dermatitis Diagnosis Model using Convolutional Neural Network (합성곱 신경망(Convolutional Neural Network)을 활용한 지능형 아토피피부염 중증도 진단 모델 개발)

  • Yoon, Jae-Woong;Chun, Jae-Heon;Bang, Chul-Hwan;Park, Young-Min;Kim, Young-Joo;Oh, Sung-Min;Jung, Joon-Ho;Lee, Suk-Jun;Lee, Ji-Hyun
    • Management & Information Systems Review
    • /
    • v.36 no.4
    • /
    • pp.33-51
    • /
    • 2017
  • With the advent of 'The Forth Industrial Revolution' and the growing demand for quality of life due to economic growth, needs for the quality of medical services are increasing. Artificial intelligence has been introduced in the medical field, but it is rarely used in chronic skin diseases that directly affect the quality of life. Also, atopic dermatitis, a representative disease among chronic skin diseases, has a disadvantage in that it is difficult to make an objective diagnosis of the severity of lesions. The aim of this study is to establish an intelligent severity recognition model of atopic dermatitis for improving the quality of patient's life. For this, the following steps were performed. First, image data of patients with atopic dermatitis were collected from the Catholic University of Korea Seoul Saint Mary's Hospital. Refinement and labeling were performed on the collected image data to obtain training and verification data that suitable for the objective intelligent atopic dermatitis severity recognition model. Second, learning and verification of various CNN algorithms are performed to select an image recognition algorithm that suitable for the objective intelligent atopic dermatitis severity recognition model. Experimental results showed that 'ResNet V1 101' and 'ResNet V2 50' were measured the highest performance with Erythema and Excoriation over 90% accuracy, and 'VGG-NET' was measured 89% accuracy lower than the two lesions due to lack of training data. The proposed methodology demonstrates that the image recognition algorithm has high performance not only in the field of object recognition but also in the medical field requiring expert knowledge. In addition, this study is expected to be highly applicable in the field of atopic dermatitis due to it uses image data of actual atopic dermatitis patients.

  • PDF

Evaluation of Transfer Learning in Gastroscopy Image Classification using Convolutional Neual Network (합성곱 신경망을 활용한 위내시경 이미지 분류에서 전이학습의 효용성 평가)

  • Park, Sung Jin;Kim, Young Jae;Park, Dong Kyun;Chung, Jun Won;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.213-219
    • /
    • 2018
  • Stomach cancer is the most diagnosed cancer in Korea. When gastric cancer is detected early, the 5-year survival rate is as high as 90%. Gastroscopy is a very useful method for early diagnosis. But the false negative rate of gastric cancer in the gastroscopy was 4.6~25.8% due to the subjective judgment of the physician. Recently, the image classification performance of the image recognition field has been advanced by the convolutional neural network. Convolutional neural networks perform well when diverse and sufficient amounts of data are supported. However, medical data is not easy to access and it is difficult to gather enough high-quality data that includes expert annotations. So This paper evaluates the efficacy of transfer learning in gastroscopy classification and diagnosis. We obtained 787 endoscopic images of gastric endoscopy at Gil Medical Center, Gachon University. The number of normal images was 200, and the number of abnormal images was 587. The image size was reconstructed and normalized. In the case of the ResNet50 structure, the classification accuracy before and after applying the transfer learning was improved from 0.9 to 0.947, and the AUC was also improved from 0.94 to 0.98. In the case of the InceptionV3 structure, the classification accuracy before and after applying the transfer learning was improved from 0.862 to 0.924, and the AUC was also improved from 0.89 to 0.97. In the case of the VGG16 structure, the classification accuracy before and after applying the transfer learning was improved from 0.87 to 0.938, and the AUC was also improved from 0.89 to 0.98. The difference in the performance of the CNN model before and after transfer learning was statistically significant when confirmed by T-test (p < 0.05). As a result, transfer learning is judged to be an effective method of medical data that is difficult to collect good quality data.

Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning (데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안)

  • Kim, Youngjun;Kim, Yeojeong;Lee, Insun;Lee, Hong Joo
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • As Artificial Intelligence (AI) technology develops, it is applied to various fields such as image, voice, and text. AI has shown fine results in certain areas. Researchers have tried to predict the stock market by utilizing artificial intelligence as well. Predicting the stock market is known as one of the difficult problems since the stock market is affected by various factors such as economy and politics. In the field of AI, there are attempts to predict the ups and downs of stock price by studying stock price patterns using various machine learning techniques. This study suggest a way of predicting stock price patterns based on the Convolutional Neural Network(CNN) among machine learning techniques. CNN uses neural networks to classify images by extracting features from images through convolutional layers. Therefore, this study tries to classify candlestick images made by stock data in order to predict patterns. This study has two objectives. The first one referred as Case 1 is to predict the patterns with the images made by the same-day stock price data. The second one referred as Case 2 is to predict the next day stock price patterns with the images produced by the daily stock price data. In Case 1, data augmentation methods - random modification and Gaussian noise - are applied to generate more training data, and the generated images are put into the model to fit. Given that deep learning requires a large amount of data, this study suggests a method of data augmentation for candlestick images. Also, this study compares the accuracies of the images with Gaussian noise and different classification problems. All data in this study is collected through OpenAPI provided by DaiShin Securities. Case 1 has five different labels depending on patterns. The patterns are up with up closing, up with down closing, down with up closing, down with down closing, and staying. The images in Case 1 are created by removing the last candle(-1candle), the last two candles(-2candles), and the last three candles(-3candles) from 60 minutes, 30 minutes, 10 minutes, and 5 minutes candle charts. 60 minutes candle chart means one candle in the image has 60 minutes of information containing an open price, high price, low price, close price. Case 2 has two labels that are up and down. This study for Case 2 has generated for 60 minutes, 30 minutes, 10 minutes, and 5minutes candle charts without removing any candle. Considering the stock data, moving the candles in the images is suggested, instead of existing data augmentation techniques. How much the candles are moved is defined as the modified value. The average difference of closing prices between candles was 0.0029. Therefore, in this study, 0.003, 0.002, 0.001, 0.00025 are used for the modified value. The number of images was doubled after data augmentation. When it comes to Gaussian Noise, the mean value was 0, and the value of variance was 0.01. For both Case 1 and Case 2, the model is based on VGG-Net16 that has 16 layers. As a result, 10 minutes -1candle showed the best accuracy among 60 minutes, 30 minutes, 10 minutes, 5minutes candle charts. Thus, 10 minutes images were utilized for the rest of the experiment in Case 1. The three candles removed from the images were selected for data augmentation and application of Gaussian noise. 10 minutes -3candle resulted in 79.72% accuracy. The accuracy of the images with 0.00025 modified value and 100% changed candles was 79.92%. Applying Gaussian noise helped the accuracy to be 80.98%. According to the outcomes of Case 2, 60minutes candle charts could predict patterns of tomorrow by 82.60%. To sum up, this study is expected to contribute to further studies on the prediction of stock price patterns using images. This research provides a possible method for data augmentation of stock data.

  • PDF