• Title/Summary/Keyword: Vestibular stimulation activity

Search Result 9, Processing Time 0.027 seconds

Electrical Stimulation Can Facilitate Vestibular Compensation Following Unilateral Labyrinthectomy in Rats

  • Park, Byung-Rim;Kim, Jin-Ok;Kim, Min-Sun;Lee, Moon-Young;Kim, Jae-Hyo;Jin, Yuan-Zhe;Choi, Myung-Ae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.123-131
    • /
    • 2001
  • To investigate the effects of electrical stimulation on vestibular compensation, which is the recovery of vestibular symptoms following unilateral labyrinthectomy (UL), intermittent electrical stimulation was applied to the injured vestibular portion in Sprague-Dawley rats. Vestibuloocular and vestibulospinal reflexes, electrical activity and expression of c-Fos protein in medial vestibular nuclei (MVN) were measured with time following UL. Spontaneous nystagmus occurred with frequency of $2.9{\pm}0.2$ beats/sec at 2 hours after UL and disappeared after 72 hours. Electrical stimulation decreased the frequency of nystagmus significantly till 24 hours after UL. Roll head deviation was $107{\pm}9.7^{\circ}$ at 2 hours after UL and the deviation was maintained till 72 hours, but electrical stimulation decreased the deviation significantly 6 hours after UL. Resting activity of type I neurons in ipsilateral MVN to the injured vestibular side decreased significantly compared with control at 6 and 24 hours after UL, but the activity of type I neurons was recovered to control level by electrical stimulation at 24 hours after UL. Gain of type I neurons induced by sinusoidal rotation of 0.1 Hz decreased significantly till 24 hours after UL, but electrical stimulation restored the activity at 24 hours. The gain of type II neurons decreased significantly at 6 hours after UL, but electrical stimulation restored the activity. Expression of c-Fos protein was asymmetric between bilateral MVN till 24 hours after UL, but the asymmetry disappeared by electrical stimulation 6 hours after UL. These results suggest that electrical stimulation to the injured vestibular portion facilitates vestibular compensation following UL by restoration of symmetry of neuronal activity between bilateral vestibular nuclei resulting from increased activity in ipsilateral vestibular nuclei to the injured side.

  • PDF

Effects of Electrical Stimulation of the Vestibular System on Neuronal Activity of the Ipsilateral Medial Vestibular Nuclei Following Unilateral Labyrinthectomy in Rats (일측 전정기관 손상 흰쥐에서 동측의 내측 전정신경핵 활동성에 대한 전정기관의 전기자극 효과)

  • Lee Moon-Yong;Kim Min-Sun;Park Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.263-273
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of electrical stimulation on vestibular compensation following ULX in rats. Electrical stimulation (ES) with square pulse ($100{\sim}300uA$, 1.0 ms, 100 Hz) was applied to ampullary portion bilaterally for 6 and 24 hours in rats receiving ULX. After ES, animals that showed the recovery of vestibular symptoms by counting and comparing the number of spontaneous nystagmus were selected for recording resting activity of type I, II neurons in the medial vestibular nuclei (MVN) of the lesioned side. And then the dynamic neuronal activities were recorded during sinusoidal rotation at a frequency of 0.1 Hz and 0.2 Hz. The number of spontaneous nystagmus was significantly different 24 hours (p<0.01, n=10), but not 6 hours after ULX+ES. As reported by others, the great reduction of resting activity only in the type I neurons ipsilateral to lesioned side was observed 6, 24 hours after ULX compared to that of intact labyrinthine animal. However, the significant elevation (p<0.01) of type I and reduction (p<0.01) of type II neuronal activity were seen 24 hours after ULX+ES. Interestingly, gain, expressed as maximum neuronal activity(spikes/sec)/maximum rotational velocity(deg/sec), was increased in type I cells and decreased in type II cells 24 hours after ULX+ES in response to sinusoidal rotation at frequencies of both 0.1 Hz and 0.2 Hz. This result suggests that accompanying the behavioral recovery, the electrical stimulation after ULX has beneficial effects on vestibular compensation, especially static symptoms (spontaneous nystagmus), by enhancing resting activity of type I neurons and reducing that of type II neurons.

  • PDF

The Effect of Vestibular Stimulation Activity on Visual Perception among University Students in the Age of Twenties (20대 대학생에서 전정계 자극 활동이 시 지각 과제 수행에 미치는 영향)

  • Ki-Hoon, Hong;So-Young, Hong
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Objective : The purpose of this study was to identify the effect of vestibular stimulation activity on visual perception. Methods : A total of 58 healthy adults in chungnam was participated in this study. I divided into the total 3 groups and studied. Group A was no vestibular stimulation, they sat on general chair and performed the visual perception task. Group B and C sat on general chair and ball chair respectively, after vestibular stimulation activity and they performed visual perception task. I measured the visual perception task with the time. Results : There was a significant difference between Group A and B and C. There was no significant difference between group B and C. Conclusion : The result shows that the vestibular stimulation activity is effective for an improvement in visual perception.

Effect of Electrical Stimulation of the Vestibular System on Vestibuloocular Reflex and c-Fos Expression in the Medial Vestibular Nuclei of Unilateral Labyrinthectomized Rats (일측 전정기관 손상 흰쥐에서 전정안구반사와 내측전정신경핵의 c-Fos 단백질발현에 대한 전정기관의 전기자극 효과)

  • Park Byung-Rim;Hwang Ho-Ryong;Lee Moon-Yong;Kim Min-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.275-284
    • /
    • 1997
  • Unilateral labyrinthectorny (ULX) causes autonomic symptoms, ocular and postural asymmetries, which disappear over tune in the process of equilibrium recovery known as vestibular compensation. In the present study in order to elucidate mechanisms responsible for the effects of electrical stimulation on vestibular compensation and investigate the relationship between vestibular compensation and c-Fos expression in the medial vestibular nuclei following ULX, we measured spontaneous nystagmus, eye movement induced by sinusoidal rotation and c-Fos expression or to 72 hs after ULX in Sprague-Dawley rats. Experimental animals were divided into two groups: ULX group with ULX only, and electrical stimulation (ES) group with electrical stimulation of $-2{\sim}-5V$, 1.0ms, 100 Hz to the lesioned vestibular system for 4 hs/day. Spontaneous nystagmus following ULX disappeared by 72 hs in ULX group and 36 hs in ES group. In eye movement induced by sinusoidal rotation, normal pattern of eye movement by rotation toward the lesioned side was recovered 24 hs after ULX at rotation of 0.1 Hz and 6 hs after at 0.2 Hz, 0.5 Hz in ULX group. In ES group, the eye movement recovered after 12 hs at 0.1 Hz, 6 hs at 0.2 Hz, and 4 hs at 0.5 Hz. Directional Preponderance which represents the symmetry of bilateral vestibular functions showed significantly early recovery in ES group compared with that of ULX group. Expression or c-Fos immunoreactive cells in the bilateral medial vestibular nuclei was severely asymmetrical till 36 hs in ULX group, and then it became a symmetry and disappeared after 72 hs. However, ES group showed the symmetry of c-Fos expression after 6 hs, which was significantly early recovery in 25 group. All these findings suggest that electrical stimulation ameliorates recovery of vestibuloocular reflex following ULX by the restoration of the balance of the resting activity between bilateral medial vestibular nuclei. In addition, c-Fos expression in the medial vestibular nuclei could be used as a marker of vestibular compensation since c-Fos expression is closely related to the course of recovery following ULX.

  • PDF

Relationship between Vestibuloocular Reflex and Autonomic Nerve Response in Adults (성인에서 전정안구반사를 이용한 평형감각과 자율신경반응의 관련성)

  • 김규겸;박현영;전희정;윤상대;박병림
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.03a
    • /
    • pp.237-242
    • /
    • 1999
  • The nature of the interactions between the vestibular and autonomic systems is complex and has not been fully defined. Vestibuloocular reflex induced by sinusoidal rotation and activity of the autonomic nerves in the heart were measured to investigate the interactions between the vestibular system and the autonomic nervous system in healthy adults. Eye movement induced by sinusoidal rotation of the whole body or optokinetic stimulation at 0.04 Hz was analyzed in gain, phase, and symmetry. EKG was measured during vestibular stimulation and analyzed in heart rate variability including mean R-R interval, standard deviation (SD) and coefficient of variance (CV) of R-R interval, and power spectrum of low frequency region (LF) and high frequency region (HF). Gain of eye movement was 0.65${\pm}$0.03 by ratatory stimulation, 0.70${\pm}$0.02 in optokinetic stimulation, 0.08${\pm}$0.02 in visual suppression, and 0.84${\pm}$0.04 in visual enhancement. In R-R interval, resting condition (control) was 0.82${\pm}$0.03 sec, and visual suppression showed significant increase and visual enhancement did significant decrease compared with control (p<0.01).CV was 0.06${\pm}$0.02 in control and visual enhancement increased significantly (p<0.05). In LF/HF control was 1.40${\pm}$0.23, which was not different from rotatory or optokinetic stimulation. But visual suppression decreased LF/HF significantly and visual enhancement increased significantly compared with control (p<0.01). These results suggest that degree of gain corresponds with LF/HF and increased gain in visual enhancement is deeply related to the activity of sympathetic nerves.

  • PDF

Excitatory Effect of Vestibular Canals on Extraocular Oblique Muscles in Rabbits (가토(家兎)에 있어서 전정반규관(前庭半規管)의 외안사근(外眼斜筋)에 관(對)한 흥분적(興奮的) 작용(作用)에 관(關)한 연구(硏究))

  • Kim, Jeh-Hyub;Park, Byung-Rim;Gill, Won-Sik
    • The Korean Journal of Physiology
    • /
    • v.16 no.1
    • /
    • pp.31-40
    • /
    • 1982
  • The present experiment was carried out to elucidate interrelation between the vestibular canals and the extraocular oblique muscles. In urethane anesthetized rabbits, excitatory or inhibitory effect of the canal was produced by three different methods; selective electrical stimulation of the ampullary nerve, bidirectional (ampullofugal or ampullopetal) lymphatic fluid flow, and rapid freezing of the canal. Changes of isometric tension as well as electro-myographic activity of the oblique muscles were recorded in the ipsilateral and contralateral eyes, by means of a polygraphic recorder, and the following results were obtained. 1) Electrical stimulation of a unilateral vertical or horizontal nerve caused contraction of superior oblique muscle and relaxation of inferior oblique muscle in the ipsilateral eye, and contraction of inferior oblique muscle and relaxation of superior oblique muscle in the contralateral eye. 2) Ampullofugal flow in a vertical canal and ampullopetal flow in a horizontal canal caused the oblique muscle responses which were identical to those responses produced by the electrical stimulation of the same canal nerve. 3) Rapid freezing of a vertical canal elicited the oblique muscle responses which were opposite to those caused by electrical stimulation of the same canal nerve. From the above experimental results, functional interrelation between the individual vestibular canal and bilateral extraocular oblique muscles were better elucidated. When these results were compared to those reported by previous investigators (Utzumi, Suzuki et al.), some important discrepancies were found between them. We ascribed such discrepancies to experimental errors of the previous investigators, since their results reflected theoretical contradictions in terms of vestibular eye movements.

  • PDF

Studies on the Interrelationship between the Vestibular Semicircular Canals and the Extraocular Muscles in Rabbits and Cats (가토(家兎) 및 가묘(家猫)에 있어서 전정반규관(前庭半規管)과 외안근(外眼筋)의 상관성(相關性)에 관(關)한 연구(硏究))

  • Kim, Jeh-Hyub;Park, Byung-Rim;Park, Chul-Soon
    • The Korean Journal of Physiology
    • /
    • v.21 no.1
    • /
    • pp.91-101
    • /
    • 1987
  • The present experiment was carried out, in the rabbit and cat, in order to explore functional interrelationship between the vestibular semicircular canals and extraocular muscles, which are involved in the vestibulooculomotor reflex as the receptor and effector organ respectively. Semicircular canals were subjected to electrical stimulation, lymphatic fluid flow or acute freezing, and responses of the extraocular muscles were recorded in terms of changes in electromyographic activity and isometric tension. Electrical stimulation of a unilateral canal elicited contraction of the superio-medial muscle group (superior oblique, superior rectus and medial rectus muscles) in the ipsilateral eye and the inferio-lateral muscle group (inferior oblique, inferior rectus and lateral rectus muscles) in the contralateral eye. Thus a simple and distinct axiom was found in the pattern of the reflex-response of the extraocular muscles. Inhibition of the unilateral canals elicited the extraocular muscle responses contrary to those observed by excitation of the canal. Based on the present experimental results, it was demonstrated that the functional interrelations between the semicircular canals and extraocular muscles are rather equivalent in the frontal eyed cats (with binocular vision) and lateral eyed rabbits (with monocular vision). Therefore the previous thesis that the vestibuloocular relations vary from species to species awaits experimental reevaluation.

  • PDF

Responses of Inferior Olive Neurons to Stimulation of Semicircular Canals. II. Vertical Semicircular Canalss

  • Park, Sah-Hoon;Park, Jong-Seong;Park, Jin-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.193-198
    • /
    • 2003
  • In the present study, the vestibularly evoked activity of inferior olive (IO) neurons was examined to investigate the vertical vestibular information transmitted through the vestibulo-olivo-cerebellar climbing fiber pathway. The extracellular recording was made in 74 neurons of the IO of cats, while animals were sinusoidally rotated. Most of vestibularly activated IO neurons responded to the vertical rotation (roll) test and were found in or near the ${\beta}$ subnuclei $(IO{\beta})$. The vestibular IO neurons were activated, when the animal was rotated to the side contralateral to the recording site. In contrast to the observation that the gain of responses of yaw sensitive cells (YSC) was not changed by the rotation frequency, that of the roll-sensitive cells (RSC) decreased as the rotation frequency was increased. Regardless of RSC or HSC, IO neurons showed the tendency of phase-lag in their responses. The alternating excitatory and inhibitory phases of responses of RSC were dependent on the direction of head orientation, the characteristics of which are the null response plane (NRP) and the optimal response plane (ORP). The analysis based on the NRP of RSC showed that vestibular inputs from the ipsilateral anterior semicircular canal induced the NRP of the RSC response at about 45 degree counterclockwise to the longitudinal axis of the animal, and that those inputs were distributed to RSC in the rostral part of $IO{\beta}$. On the other hand, those from the posterior semicircular canal were related with the NRP at about 45 degree clockwise and with the caudal part of the $IO{\beta}$. These results suggest that IO neurons receive and encode the vestibular information, the priority of which seems to be the vertical component of the body movement rather than the horizontal ones.

The Effects of Smooth Pursuit Eye Movement and Saccadic Eye Movement on Balance and Muscle Activation during One Leg Standing (한 다리 서기 동안 매끈눈따라보기와 신속눈운동이 균형과 근활성도에 미치는 영향)

  • Young-Bum, Jung;Gyu-Ryeong, Kim;Myoung-Kwon, Kim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.4
    • /
    • pp.113-121
    • /
    • 2022
  • PURPOSE: This study is examined the effects of vestibular stimulation through eye movement on balance and muscle activity. METHODS: In 42 healthy adults, no eye exercise was applied to both feet and one foot. The speed of smooth pursuit eye movement (.2 Hz, .3 Hz, and .5 Hz) and saccadic eye movement (.5 Hz and 1.1 Hz) were randomized. The measurements were taken three times for 30 seconds while standing on two feet and measured three times for 10 seconds while standing on one foot. The muscle activity measurement equipment was used to measure the electromyogram signals of the tibialis anterior, peroneus longus, gastrocnemius medialis, vastus medialis, vastus lateralis, biceps femoris, abdominal internal oblique, and erector spinae muscle. RESULTS: As a result of this study, when applying smooth pursuit eye movement on one leg, the pressure center movement increased, the muscle activity of the lower extremity increased, in the saccadic eye movement, and the center of pressure decreased. CONCLUSION: Accordingly, the smooth pursuit of eye movement, the intervention of this study, affects balance. Through this, the balance can be improved by applying eye movement to the target who needs to improve the balance ability.