• Title/Summary/Keyword: Vessel collision energy

Search Result 27, Processing Time 0.024 seconds

The energy dissipation mechanism of ship and fender system by vessel collision (선박충돌에 의한 선박과 방호공의 에너지 소산 메카니즘)

  • Hong Kwan-Young;Lee Gye-Hee;Ko Jae-Yong;Lee Seong-Lo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.696-703
    • /
    • 2005
  • Recently, the collision problems between a bridge and a navigating ship are frequently issued at the stage of structure design. Even the many study results about vessel to vessel collision are presented, but the collision studies between vessel and bridge structure have been hardly presented. In this study, nonlinear dynamic analysis of vessel and fender system carry out using ABAQUS/Explicit commercial program with consideration of some parameters, such as bow structure we composed to shell element also ship's hull is modeling to beam element. Also, buoyancy effect is considered as spring element. The two types of fender systems was comparable with both collision analysis about steel materials fender system and rubber fender system On the purpose of study is analyzed the plasticity dissipated energy of vessel and fender system. We blow characteristic that kinetic energy is disappeared by plastic large deformation in case of collision. Also, We considered dissipated kinetic energy considering friction effect.

  • PDF

The ship collision analysis of dolphin protection system (돌핀방호공의 선박충돌해석)

  • Lee Gye-Hee;Lee Seong-Lo;Go Jae-Yong;Yu Won-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.143-150
    • /
    • 2005
  • In this study, to evaluate the collision behaviors of the navigating vessel and the dolphin protective system protecting the substructures of bridges, the numerical simulation was performed. The analysis model of vessel bow that the plastic deformations are concentrated was composed by shell elements, and the main body of vessel was modeled by beam elements to represent the mass distribution and the change of potential energy. The material model reflecting the confining condition was used for the modeling of the filling soil of dolphin system. The surrounding soil of the dolphin system was modeled as nonlinear springs. As results, it is verified that the dolphin system can adequately dissipate the kinematic energy of the collision vessel. The surrounding soil of the dolphin system is able to resist the collision force of the vessel. And the major energy dissipation mechanism of collision energy is the plastic deformation of the vessel bow and the dolphin system.

  • PDF

A Study on Safe Vessel Traffic Speeds Based On a Ship Collision Energy Analysis at Incheon Bridge (인천대교 선박 충돌에너지 분석을 통한 선박의 통항안전 속력에 관한 연구)

  • Lee, Chang-Hyun;Lee, Hong-Hoon;Kim, Deun-Bong;Kim, Chol-Seong;Park, Seong-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.593-599
    • /
    • 2016
  • Incheon Bridge is 13.38 km long with an 800 m span, connecting Incheon International Airport and Songdo International City, Per hour 73.8 vessels navigate this space. The purpose of this study was to suggest a safe passing speed based on the displacement of a vessel based on the safety criteria of Incheon Bridge's anti-collision fence, which was designed during its initial construction. As AASHTO LRFD suggested, vessel collision energy, vessel collision velocity, and the hydrodynamic mass coefficient were considered to derive a safe vessel traffic speed. Incheon Bridge's anti-collision fence was designed so that 100,000 DWT vessels can navigate at a speed of 10 knot. This research suggests a safe speed for vessel traffic through a comparative analysis of an experimental ship's (300,000 DWT) speed and cargo conditions, regulation speed has been calculated according to the collision energy under each set of conditions. Additionally, safe traffic vessel's safe speed was analyzed with reference to tidal levels. Results from the experimental ship showed that a vessel of maximum 150,000 DWT is able to pass Incheon Bridge at a maximum of 7 knots with an above average water level, and is able to pass the bridge with a maximum of 8 knots under ballast conditions.

The vessel collision load on bridge with fender system (방호공을 고려한 선박의 충돌하중)

  • 이계희;고재용;이성로
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.193-200
    • /
    • 2004
  • In this study, the impact load on bridge by vessel collision in consideration of fender system is evaluated by numerical method. The bow of object vessel(DWT5000) is standardized, and modeled by shell elements. The main body of objective vessel is modeled by beam elements that present mass distribution and stiffness of vessel. The buoyancy effect of vessel is considered as linear spring. The two types of fender systems, such as steel and rubber are analyzed in this study. In steel fender system, the steel plates that absorb collision energy by its collapse are modeled by shell element with stiffener. The steel is material modeled elastic-plastic material. In the rubber fender system, the rubber material is modeled hyper-elastic material and the main body of fender is modeled by solid elements. The global impact responses of vessel and fender system are evaluated by explicit dynamic scheme. The results show that the magnitude of vessel collision force are depended on the material behavior of fender system. Also the values of collision load are conservative compare to the those of design codes.

  • PDF

A Protection Capacity Evaluation of Vessel Protective Structures by Quasi-Static Collision Analysis (준정적 충돌해석을 통한 선박충돌방공호의 방호능력평가)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, the vessel collision protective structure and the vessel were modeled numerically and the quasi-static collision analysis was performed to evaluate the maximum protection capacity. In the modeling process of protective structure, the nonlinear behaviors of structure and the supporting conditions of ground including pull-out action were considered. In that of collision vessel, the bow of vessel was modeled precisely, because of the nonlinear behaviors were concentrated on it. For the efficient analysis, the mass scaling scheme was applied, also. To evaluate the differences and efficiency, the dynamic analyses were performed for the same model, additionally. Based on the obtained energy dissipation curves of the structure and the vessel, the moment that the collision force affected to the bridge substructures was determined and the maximum allowable collision velocity was evaluated. Because of the energy dissipation bound can be recognized clearly, this scheme can be used efficient in engineering work.

Collision Analysis of Submerged Floating Tunnel by Underwater Navigating Vessel (수중운항체에 대한 해중터널의 충돌해석)

  • Hong, Kwan-Young;Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.369-377
    • /
    • 2014
  • In this paper, to recognize the collision behavior between a submerged floating tunnel(SFT) and underwater navigation vessel(UNV), both structures are modeled and analyzed. The SFT of collision point is modeled tubular section using concrete with steel lining. The other part of SFT is modeled elastic beam elements. Mooring lines are modeled as cable elements with tension. The under water navigation vessel is assumed 1800DT submarine and its total mass at collision is obtained with hydrodynamic added mass. The buoyancy force on SFT is included in initial condition using dynamic relaxation method. The buoyancy ratio (B/W) and the collision speed are considered as the collision conditions. As results, energy dissipation is concentrated on the SFT and that of the UNV is minor. Additionally, the collision behaviors are greatly affected by B/W and the tension of mooring lines. Especially, the collision forces are shown different tendency compare to vessel collision force of current design code.

Vessel Collision Analysis of an Underwater Soil Slope using Coupled Eulerian-Lagrangian Scheme 2: Parametric Study (Coupled Eulerian-Lagrangian 기법을 이용한 선박의 수중사면 충돌해석 2 : 매개변수연구)

  • Lee, Gyehee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • In this study, parametric analyses are performed using the coupled Eulerian-Lagrangian scheme for the collision behaviors of a vessel and an underwater slope that constitutes part of an artificial protective island. The vessel parameters considered in the analysis are bow angle, stem angle, draft, and impact velocity. The gradient of the slope, the friction coefficient between the bow and the slope, and soil strength are considered as parameters of the slope. For each parameter, the dissipated collision energy and the collision force are estimated from the behavior of the vessel, and the energy dissipation mechanism is identified in terms of the ground deformation. The collision force is assumed as an exponential function, and the effects of the parameters are estimated. As a result, only two parameters, the gradient of the slope and the friction coefficient between the vessel and the soil, can affect the exponential coefficient of the function. The dissipated energy by the soil can thus be estimated adequately. The relationship between the volume of the soil pushed out by the bow and the dissipated collision energy is estimated as a linear function. This relationship is independent of the magnitude of the collision energy, and affected more by the friction coefficient and the soil strength than by the parameters of the vessel.

Numerical study on the structural response of energy-saving device of ice-class vessel due to impact of ice block

  • Matsui, Sadaoki;Uto, Shotaro;Yamada, Yasuhira;Watanabe, Shinpei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.367-375
    • /
    • 2018
  • The present paper considers the contact between energy-saving device of ice-class vessel and ice block. The main objective of this study is to clarify the tendency of the ice impact force and the structural response as well as interaction effects of them. The contact analysis is performed by using LS-DYNA finite element code. The main collision scenario is based on Finnish-Swedish ice class rules and a stern duct model is used as an energy-saving device. For the contact force, two modelling approaches are adopted. One is dynamic indentation model of ice block based on the pressure-area curve. The other is numerical material modelling by LS-DYNA. The authors investigated the sensitivity of the structural response against the ice contact pressure, the interaction effect between structure and ice block, and the influence of eccentric collision. The results of these simulations are presented and discussed with respect to structural safety.

A Study on Behaviors of Pile Protective Structures by Simplified Collision Model (간이충돌모델을 이용한 파일형 선박충돌방호공의 충돌거동 연구)

  • Lee, Gye Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • In this paper, the deformation-energy curves of the plastic hinges and the vessel bow, which are the major energy dissipation mechanism of a pile protective structures, were estimated, and the parametric study was performed by using those curves to apply the simplified collision model which developed in the previous study. Considered parameters were the mass of slab, the number of piles, the mass of vessel and the collision speed. As results, the difference of energy dissipation mechanism of two pile types (filled and non-filled) were revealed, and the collision behaviors of the protective structures could be tuned by the control of the inertia mass of capping slab. Therefore the simplified collision model can be used in a primary design and optimal design.

Analysis of Ship Collision Behavior of Pile Supported Structure (파일지지 구조물의 선박 충돌거동에 대한 해석)

  • Bae, Yong Gwi;Lee, Seong Lo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.323-330
    • /
    • 2008
  • The ship collision analysis of steel pile group as protection system of bridge in navigable waterways was performed to analyze the structural characteristics of protective structure during ship collision. The analysis encompassed finite element modeling of ship and pile, modeling of material non-linearity, hard impact analysis, displacement-based analysis and soft impact analysis for collision scenarios. Through the analysis of hard impact with a rigid wall, impact load for each collision type of ship bow was estimated. In the displacement-based analysis the estimate of energy which protection system can absorb within its maximum horizontal clearance so as to secure bridge pier from vessel contact during collision was performed. Soft impact analysis for various collision scenarios was conducted and the collision behaviors of vessel and pile-supported protection system were reviewed for the design of protection system. The understanding of the energy dissipation mechanism of pile supported structure and colliding vessel would give us the optimized design of protective structure.