• 제목/요약/키워드: Very low-level liquid waste

검색결과 7건 처리시간 0.024초

An Approach to the Localization of Technology for a Transport and Storage Container for Very Low-Level Radioactive Liquid Waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Kim, Hee Reyoung
    • 방사성폐기물학회지
    • /
    • 제20권1호
    • /
    • pp.127-131
    • /
    • 2022
  • The structural safety of prototype transport and storage containers for very low-level radioactive liquid waste was experimentally estimated for its localization development. Transport containers for radioactive liquid waste have been researched and developed, however, there are no standardized commercial containers for very low-level radioactive waste in Korea. In this study, the structural safety of the designated IP-2 type container capable of transporting and temporarily storing large amounts of very low-level liquid waste, which is generated during the operation and decommissioning of nuclear power plants, was demonstrated. The stacking and drop tests, which were conducted to determine the structural integrity of the container, verified that there was no external leakage of the contents in spite of its structural deformation due to the drop impact. This study shows the effort required for the localization of the technology used in manufacturing transport and storage containers for very low-level radioactive liquid waste, and the additional structural reinforcement of the container in which the commercial intermediate bulk container (IBC) external frame was coupled.

Radiological analysis of transport and storage container for very low-level liquid radioactive waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Park, Seong Hee;Kim, Youn Jun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4137-4141
    • /
    • 2021
  • As NPPs continue to operate, liquid waste continues to be generated, and containers are needed to store and transport them at low cost and high capacity. To transport and store liquid phase very low-level radioactive waste (VLLW), a container is designed by considering related regulations. The design was constructed based on the existing container design, which easily transports and stores liquid waste. The radiation shielding calculation was performed according to the composition change of barium sulfate (BaSO4) using the Monte Carlo N-Particle (MCNP) code. High-density polyethylene (HDPE) without mixing the additional BaSO4, represented the maximum dose of 1.03 mSv/hr (<2 mSv/hr) and 0.048 mSv/hr (<0.1 mSv/hr) at the surface of the inner container and at 2 m away from the surface, respectively, for a 10 Bq/g of 60Co source. It was confirmed that the dose from the inner container with the VLLW content satisfied the domestic dose standard both on the surface of the container and 2 m from the surface. Although it satisfies the dose standard without adding BaSO4, a shielding material, the inner container was designed with BaSO4 added to increase radiation safety.

영광 3&4와 5&6호기에서 액체 방사성폐기물 처리방법의 비교 (The Comparison on Treatment Method of Liquid Radioactive Waste in Yonggwang #3&4 and #5&6)

  • Yeom, Yu-Seon;Kim, Soong-Pyung;Lee, Seung-Jin
    • 방사성폐기물학회지
    • /
    • 제2권3호
    • /
    • pp.219-230
    • /
    • 2004
  • Most of the low-level liquid radioactive wastes generated from PWR plants are classified into high or low total suspended solid(HTDS or LTDS), and into radiochemical and radioactive laundry waste. Although the evaporation process has a high decontami- nation ability, it has several problems such as corrosion, foam, and congestion. A new liquid waste disposal process using the ion-exchange demineralizer(IED), instead of the current evaporation process, has been introduced into the Yonggwang NPP #5 and 6. These two methods have been compared to understand the differences in this study. Aspects compared here were the released radioactivity amount of the liquid radioactive wastes, the dose of off-site residents, the decontamination factor, and the amount of the solid radioactive wastes. The IED system is designed to discharge higher radioactivity about 20% than the evaporating system, and the actual radioactivity released from the evaporating and IED system were 0.473mCi and 1.098mCi, respectively. The radioactivity released from the IED was 2.32 times higher than that of the evaporating system. The dose of off-site residents was $2.97{\times}10^{-6}$mSv for the evaporating system, and $6.47{\times}10^{-6}$mSv for IED. The decontamination factor(DF) of the evaporator is, in most cases, far lower than the lower limits of detection(LLD) with the Ge-Li detector. Due to the low concentration of the liquid wastes collected from the liquid waste system, the decontamination factor of IED is very low. Since there is not enough data on the amount of solid radioactive wastes generated by the evaporation system, the comparison on these two systems has been conducted on the basis of the design, and the comparison result was that the evaporating system generated more wastes about 40% than IED.

  • PDF

증발을 이용한 방사성 액체폐기물의 처리와 피폭선량평가 (Treatment of Radioactive Liquid Waste Using Natural Evaporator and Resulted Exposure Dose Assessment)

  • 정경환;박승국;김은한;정기정;박현수
    • Journal of Radiation Protection and Research
    • /
    • 제24권2호
    • /
    • pp.101-108
    • /
    • 1999
  • 극저준위 방사성액체폐기물 처리를 위하여 공기의 온도와 습도 및 유입 공기의 속도에 따른 증발량의 관계를 천을 이용한 강제증발실험 장치로 실험하였다. 그 결과 각각의 변수와 증발량의 상관관계를 실험식으로 도출하였다. 또한 Cs-137 을 함유한 모의폐액을 사용하여 본 장치에 대한 제염 계수를 얻은 결과 $DF=10^4$으로 나타났다. TRlGA Mark II & III 연구용 원자로 폐로시 발생되는 극저준위 방사성액체폐기물을 증발장치로 처리할 때 주변의 일반개인에 대한 연간 피폭선량을 보수적으로 평가한 결과, 유효선량 (effective dose)은 $1.01{\times}10^{-3}mSv$이고, 환경으로 배출되는 공기의 방사능 농도(Cs-137)는 $4.637{\times}10^{-14}\;{\mu}Ci/cc$ air 이다. 따라서 극저준위 방사성액체폐기물의 처리를 위하여 강제증발장치를 사용하는 것은 주민에 아무런 영향이 없음을 알 수 있었다.

  • PDF

Application of Subirrigation Using Capillary Wick System to Pot Production

  • Lee, Chi-Won;So, In-Sup;Jeong, Sung-Woo;Huh, Moo-Ryong
    • 농업생명과학연구
    • /
    • 제44권3호
    • /
    • pp.7-14
    • /
    • 2010
  • Alternative subirrigation way, capillary wick system (CWS) was tested to reduce labor cost, waste water, contamination of ground water, and use of fungicide compared to overhead irrigation system (OIS). CWS helped reduce remarkably the working hours for watering from 4 hours in OSI to just 5 minutes. Labor cost was saved 98% in CWS compared to OIS. By the physical characteristics of various growing media, 1 coconut coir+2 perlite (v/v) mixture was selected because it had an ideal distribution of three phase, e.g. 1 solid: 1 liquid: 2 gas phase. Medium mixture containing scoria had so high bulk and particle density to hurt root. In bark-containing medium, the liquid phase and the percent saturation of liquid phase with time elapsed was lower than that of other mixture. It meant that the mixture contained very low level of water. Application of CWS for cyclamen pot production played an important role in reducing the incident of fusarium wilt symptom from 18% in conventional over watering system to 4%. Cyclamen pot irrigated by capillary wick had shorter petiole and more leaves than those by overhead watering. As a result, this system was highly beneficial to get uniform pot products with high quality. It improved water and nutrient solution efficiency relative to conventional overhead irrigation system (OIS).

음식물쓰레기 세정산발효액을 외부탄소원으로 주입한 SBR 공정에서 질소 및 인 제거 (Nitrongen and Phosphorus Removal using Elutriated Acids of Food Waste as an External Carbon Source in SBR)

  • 권구호;김시원;이민재;민경석
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.462-467
    • /
    • 2006
  • An improvement of nitrogen and phosphorus removal in SBR using the elutriated acids from the food waste as an external carbon source was investigated in this study. The food waste was elutriated at $35^{\circ}C$ and pH 9 to produce the external carbon source. The elutriate of food waste were continuously collected. The elutriated liquid contained VFAs of 39,180 mg/L representing soluble COD of 44,700 mg/L. The SBR showed poor denitrification and EBPR (enhanced biological phosphorus removal) without elutriated VFAs addition. An average denitrification rate was 0.4 mg NOx-N/g MLVSS/day. In turn, EBPR was also inhibited by this poor denitrification because the remaining nitrate in anaerobic phase resulting a poor denitrification. On the other hand, the denitrification in anoxic phase significantly improved with an elutriated VFAs addition. Nitrate removal was 82% while the denitrification rate was 2.9 mg NOx-N/g MLVSS/day with 18.4 mL/cycle of elutriated VFAs. With the enhanced denitrification, nitrate concentration in anaerobic phase could effectively be controlled to a very low level. The elimination of nitrate inhibition in anaerobic phase resulted enhancement of EBPR. The specific phosphate release rate was $1.9mg\;PO_4^{3-}-P/g\; MLVSS/day$ with less than 0.5 mg/L of $PO_4^{3-}-P$ concentration.